Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 167(6): 1571-1585.e18, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27839864

RESUMO

Cell migration in confined 3D tissue microenvironments is critical for both normal physiological functions and dissemination of tumor cells. We discovered a cytoskeletal structure that prevents damage to the nucleus during migration in confined microenvironments. The formin-family actin filament nucleator FMN2 associates with and generates a perinuclear actin/focal adhesion (FA) system that is distinct from previously characterized actin/FA structures. This system controls nuclear shape and positioning in cells migrating on 2D surfaces. In confined 3D microenvironments, FMN2 promotes cell survival by limiting nuclear envelope damage and DNA double-strand breaks. We found that FMN2 is upregulated in human melanomas and showed that disruption of FMN2 in mouse melanoma cells inhibits their extravasation and metastasis to the lung. Our results indicate a critical role for FMN2 in generating a perinuclear actin/FA system that protects the nucleus and DNA from damage to promote cell survival during confined migration and thus promote cancer metastasis.


Assuntos
Núcleo Celular/metabolismo , Adesões Focais , Neoplasias Pulmonares/secundário , Melanoma/patologia , Proteínas dos Microfilamentos/metabolismo , Metástase Neoplásica , Proteínas Nucleares/metabolismo , Actinas/metabolismo , Animais , Quebras de DNA de Cadeia Dupla , Embrião de Mamíferos/citologia , Matriz Extracelular/metabolismo , Feminino , Forminas , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso
3.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34031242

RESUMO

Contact guidance is a powerful topographical cue that induces persistent directional cell migration. Healthy tissue stroma is characterized by a meshwork of wavy extracellular matrix (ECM) fiber bundles, whereas metastasis-prone stroma exhibit less wavy, more linear fibers. The latter topography correlates with poor prognosis, whereas more wavy bundles correlate with benign tumors. We designed nanotopographic ECM-coated substrates that mimic collagen fibril waveforms seen in tumors and healthy tissues to determine how these nanotopographies may regulate cancer cell polarization and migration machineries. Cell polarization and directional migration were inhibited by fibril-like wave substrates above a threshold amplitude. Although polarity signals and actin nucleation factors were required for polarization and migration on low-amplitude wave substrates, they did not localize to cell leading edges. Instead, these factors localized to wave peaks, creating multiple "cryptic leading edges" within cells. On high-amplitude wave substrates, retrograde flow from large cryptic leading edges depolarized stress fibers and focal adhesions and inhibited cell migration. On low-amplitude wave substrates, actomyosin contractility overrode the small cryptic leading edges and drove stress fiber and focal adhesion orientation along the wave axis to mediate directional migration. Cancer cells of different intrinsic contractility depolarized at different wave amplitudes, and cell polarization response to wavy substrates could be tuned by manipulating contractility. We propose that ECM fibril waveforms with sufficiently high amplitude around tumors may serve as "cell polarization barriers," decreasing directional migration of tumor cells, which could be overcome by up-regulation of tumor cell contractility.


Assuntos
Polaridade Celular , Matriz Extracelular/patologia , Adesões Focais , Metástase Neoplásica , Neoplasias/patologia , Fibras de Estresse/patologia , Humanos
4.
J Microsc ; 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37877157

RESUMO

Single-molecule localisation microscopy (SMLM) has the potential to reveal the underlying organisation of specific molecules within supramolecular complexes and their conformations, which is not possible with conventional microscope resolution. However, the detection efficiency for fluorescent molecules in cells can be limited in SMLM, even to below 1% in thick and dense samples. Segmentation of individual complexes can also be challenging. To overcome these problems, we have developed a software package termed PERPL: Pattern Extraction from Relative Positions of Localisations. This software assesses the relative likelihoods of models for underlying patterns behind incomplete SMLM data, based on the relative positions of pairs of localisations. We review its principles and demonstrate its use on the 3D lattice of Z-disk proteins in mammalian cardiomyocytes. We find known and novel features at ~20 nm with localisations of less than 1% of the target proteins, using mEos fluorescent protein constructs.

5.
Nano Lett ; 21(3): 1213-1220, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33253583

RESUMO

Inferring the organization of fluorescently labeled nanosized structures from single molecule localization microscopy (SMLM) data, typically obscured by stochastic noise and background, remains challenging. To overcome this, we developed a method to extract high-resolution ordered features from SMLM data that requires only a low fraction of targets to be localized with high precision. First, experimentally measured localizations are analyzed to produce relative position distributions (RPDs). Next, model RPDs are constructed using hypotheses of how the molecule is organized. Finally, a statistical comparison is used to select the most likely model. This approach allows pattern recognition at sub-1% detection efficiencies for target molecules, in large and heterogeneous samples and in 2D and 3D data sets. As a proof-of-concept, we infer ultrastructure of Nup107 within the nuclear pore, DNA origami structures, and α-actinin-2 within the cardiomyocyte Z-disc and assess the quality of images of centrioles to improve the averaged single-particle reconstruction.


Assuntos
DNA , Imagem Individual de Molécula
6.
Nat Methods ; 13(7): 557-62, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27240257

RESUMO

The advent of fluorescent proteins (FPs) for genetic labeling of molecules and cells has revolutionized fluorescence microscopy. Genetic manipulations have created a vast array of bright and stable FPs spanning blue to red spectral regions. Common to autofluorescent FPs is their tight ß-barrel structure, which provides the rigidity and chemical environment needed for effectual fluorescence. Despite the common structure, each FP has unique properties. Thus, there is no single 'best' FP for every circumstance, and each FP has advantages and disadvantages. To guide decisions about which FP is right for a given application, we have quantitatively characterized the brightness, photostability, pH stability and monomeric properties of more than 40 FPs to enable straightforward and direct comparison between them. We focus on popular and/or top-performing FPs in each spectral region.


Assuntos
Proteínas Luminescentes/análise , Microscopia de Fluorescência/métodos , Proteínas Recombinantes de Fusão/análise , Espectrometria de Fluorescência/métodos , Fluorescência , Células HeLa , Humanos
7.
J Cell Sci ; 129(22): 4175-4189, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27694211

RESUMO

Nanoclustering is an emerging organizational principle for membrane-associated proteins. The functional consequences of nanoclustering for receptor signaling remain largely unknown. Here, we applied quantitative multi-channel high- and super-resolution imaging to analyze the endothelial cell surface receptor CD36, the clustering of which upon binding to multivalent ligands, such as the anti-angiogenic factor thrombospondin-1 (TSP-1), is thought to be crucial for signaling. We found that a substantial fraction of unligated CD36 exists in nanoclusters, which not only promote TSP-1 binding but are also enriched with the downstream effector Fyn. Exposure to multivalent ligands (TSP-1 or anti-CD36 IgM) that result in larger and denser CD36 clusters activates Fyn. Conversely, pharmacological perturbations that prevent the enhancement of CD36 clustering by TSP-1 abrogate Fyn activation. In both cases, there is no detectable change in Fyn enrichment at CD36 nanoclusters. These observations reveal a crucial role for the basal organization of a receptor into nanoclusters that are enriched with the signal-transducing downstream effectors of that receptor, such that enhancement of clustering by multivalent ligands is necessary and sufficient to activate the downstream effector without the need for its de novo recruitment.


Assuntos
Antígenos CD36/metabolismo , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Transdução de Sinais , Actinas/metabolismo , Linhagem Celular Transformada , Colesterol/metabolismo , Células Endoteliais/metabolismo , Ativação Enzimática , Humanos , Ligantes , Microvasos/citologia , Modelos Biológicos , Ligação Proteica , Trombospondina 1/metabolismo
8.
Nat Methods ; 12(3): 215-8, 4 p following 218, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25581799

RESUMO

Fluorescent proteins facilitate a variety of imaging paradigms in live and fixed samples. However, they lose their fluorescence after heavy fixation, hindering applications such as correlative light and electron microscopy (CLEM). Here we report engineered variants of the photoconvertible Eos fluorescent protein that fluoresce and photoconvert normally in heavily fixed (0.5-1% OsO4), plastic resin-embedded samples, enabling correlative super-resolution fluorescence imaging and high-quality electron microscopy.


Assuntos
Proteínas Luminescentes/metabolismo , Microscopia Eletrônica de Varredura/métodos , Microscopia Eletrônica de Transmissão/métodos , Sequência de Aminoácidos , Animais , Sequência de Bases , Células CHO , Cricetulus , Fluorescência , Células HeLa , Humanos , Proteínas Luminescentes/genética , Imagem Molecular/métodos , Dados de Sequência Molecular , Tetróxido de Ósmio/química , Fotoquímica/métodos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
9.
Nat Methods ; 12(8): 763-5, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26098020

RESUMO

Infrared fluorescent proteins (IFPs) provide an additional color to GFP and its homologs in protein labeling. Drawing on structural analysis of the dimer interface, we identified a bacteriophytochrome in the sequence database that is monomeric in truncated form and engineered it into a naturally monomeric IFP (mIFP). We demonstrate that mIFP correctly labels proteins in live cells, Drosophila and zebrafish. It should be useful in molecular, cell and developmental biology.


Assuntos
Proteínas de Fluorescência Verde/química , Raios Infravermelhos , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , DNA/química , Biologia do Desenvolvimento , Drosophila melanogaster , Corantes Fluorescentes/química , Células HeLa , Histidina/química , Humanos , Proteínas Luminescentes/química , Camundongos , Dados de Sequência Molecular , Mutação , Neurônios/metabolismo , Plasmídeos/metabolismo , Conformação Proteica , Multimerização Proteica , Proteínas Recombinantes de Fusão/química , Transfecção , Peixe-Zebra
10.
Proc Natl Acad Sci U S A ; 112(35): E4864-73, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26283369

RESUMO

Insight into how molecular machines perform their biological functions depends on knowledge of the spatial organization of the components, their connectivity, geometry, and organizational hierarchy. However, these parameters are difficult to determine in multicomponent assemblies such as integrin-based focal adhesions (FAs). We have previously applied 3D superresolution fluorescence microscopy to probe the spatial organization of major FA components, observing a nanoscale stratification of proteins between integrins and the actin cytoskeleton. Here we combine superresolution imaging techniques with a protein engineering approach to investigate how such nanoscale architecture arises. We demonstrate that talin plays a key structural role in regulating the nanoscale architecture of FAs, akin to a molecular ruler. Talin diagonally spans the FA core, with its N terminus at the membrane and C terminus demarcating the FA/stress fiber interface. In contrast, vinculin is found to be dispensable for specification of FA nanoscale architecture. Recombinant analogs of talin with modified lengths recapitulated its polarized orientation but altered the FA/stress fiber interface in a linear manner, consistent with its modular structure, and implicating the integrin-talin-actin complex as the primary mechanical linkage in FAs. Talin was found to be ∼97 nm in length and oriented at ∼15° relative to the plasma membrane. Our results identify talin as the primary determinant of FA nanoscale organization and suggest how multiple cellular forces may be integrated at adhesion sites.


Assuntos
Adesões Focais/metabolismo , Nanoestruturas , Talina/fisiologia , Humanos , Microscopia de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA