Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Biotechnol Bioeng ; 121(4): 1371-1383, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38079117

RESUMO

Chinese Hamster Ovary (CHO) cells have rapidly become a cornerstone in biopharmaceutical production. Recently, a reinvigoration of perfusion culture mode in CHO cell cultivation has been observed. However, most cell lines currently in use have been engineered and adapted for fed-batch culture methods, and may not perform optimally under perfusion conditions. To improve the cell's resilience and viability during perfusion culture, we cultured a triple knockout CHO cell line, deficient in three apoptosis related genes BAX, BAK, and BOK in a perfusion system. After 20 days of culture, the cells exhibited a halt in cell proliferation. Interestingly, following this phase of growth arrest, the cells entered a second growth phase. During this phase, the cell numbers nearly doubled, but cell specific productivity decreased. We performed a proteomics investigation, elucidating a distinct correlation between growth arrest and cell cycle arrest and showing an upregulation of the central carbon metabolism and oxidative phosphorylation. The upregulation was partially reverted during the second growth phase, likely caused by intragenerational adaptations to stresses encountered. A phase-dependent response to oxidative stress was noted, indicating glutathione has only a secondary role during cell cycle arrest. Our data provides evidence of metabolic regulation under high cell density culturing conditions and demonstrates that cell growth arrest can be overcome. The acquired insights have the potential to not only enhance our understanding of cellular metabolism but also contribute to the development of superior cell lines for perfusion cultivation.


Assuntos
Técnicas de Cultura Celular por Lotes , Reatores Biológicos , Cricetinae , Animais , Cricetulus , Células CHO , Técnicas de Cultura Celular por Lotes/métodos , Perfusão
2.
Crit Rev Biotechnol ; 42(7): 1099-1115, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34844499

RESUMO

Much of the biopharmaceutical industry's success over the past 30 years has relied on products derived from Chinese Hamster Ovary (CHO) cell lines. During this time, improvements in mammalian cell cultures have come from cell line development and process optimization suited for large-scale fed-batch processes. Originally developed for high cell densities and sensitive products, perfusion processes have a long history. Driven by high volumetric titers and a small footprint, perfusion-based bioprocess research has regained an interest from academia and industry. The recent pandemic has further highlighted the need for such intensified biomanufacturing options. In this review, we outline the technical history of research in this field as it applies to biologics production in CHO cells. We demonstrate a number of emerging trends in the literature and corroborate these with underlying drivers in the commercial space. From these trends, we speculate that the future of perfusion bioprocesses is bright and that the fields of media optimization, continuous processing, and cell line engineering hold the greatest potential. Aligning in its continuous setup with the demands for Industry 4.0, perfusion biomanufacturing is likely to be a hot topic in the years to come.


Assuntos
Produtos Biológicos , Reatores Biológicos , Animais , Células CHO , Cricetinae , Cricetulus , Perfusão
3.
Biotechnol Bioeng ; 119(6): 1380-1391, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35180317

RESUMO

Chinese hamster ovary (CHO) cells are the primary platform for the production of biopharmaceuticals. To increase yields, many CHO cell lines have been genetically engineered to resist cell death. However, the kinetics that governs cell fate in bioreactors are confounded by many variables associated with batch processes. Here, we used CRISPR-Cas9 to create combinatorial knockouts of the three known BCL-2 family effector proteins: Bak1, Bax, and Bok. To assess the response to apoptotic stimuli, cell lines were cultured in the presence of four cytotoxic compounds with different mechanisms of action. A population-based model was developed to describe the behavior of the resulting viable cell dynamics as a function of genotype and treatment. Our results validated the synergistic antiapoptotic nature of Bak1 and Bax, while the deletion of Bok had no significant impact. Importantly, the uniform application of apoptotic stresses permitted direct observation and quantification of a delay in the onset of cell death through Bayesian inference of meaningful model parameters. In addition to the classical death rate, a delay function was found to be essential in the accurate modeling of the cell death response. These findings represent an important bridge between cell line engineering strategies and biological modeling in a bioprocess context.


Assuntos
Apoptose , Proteínas Proto-Oncogênicas c-bcl-2 , Animais , Apoptose/genética , Teorema de Bayes , Células CHO , Cricetinae , Cricetulus , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
4.
Biotechnol Bioeng ; 117(4): 1187-1203, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31930480

RESUMO

Chinese hamster ovary (CHO) cells are the predominant host cell line for the production of biopharmaceuticals, a growing industry currently worth more than $188 billion USD in global sales. CHO cells undergo programmed cell death (apoptosis) following different stresses encountered in cell culture, such as substrate limitation, accumulation of toxic by-products, and mechanical shear, hindering production. Genetic engineering strategies to reduce apoptosis in CHO cells have been investigated with mixed results. In this review, a contemporary understanding of the real complexity of apoptotic mechanisms and signaling pathways is described; followed by an overview of antiapoptotic cell line engineering strategies tested so far in CHO cells.


Assuntos
Apoptose , Produtos Biológicos/metabolismo , Células CHO , Engenharia Celular , Animais , Técnicas de Cultura de Células , Cricetinae , Cricetulus
5.
Biotechnol Bioeng ; 115(12): 2893-2907, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30080940

RESUMO

Rapid advances in intensifying upstream processes for biologics production have left downstream processing as a bottleneck in the manufacturing scheme. Biomanufacturers are pursuing continuous downstream process development to increase efficiency and flexibility, reduce footprint and cost of goods, and improve product consistency and quality. Even after successful laboratory trials, the implementation of a continuous process at manufacturing scale is not easy to achieve. This paper reviews specific challenges in converting each downstream unit operation to a continuous mode. Key elements of developing practical strategies for overcoming these challenges are detailed. These include equipment valve complexity, favorable column aspect ratio, protein-A resin selection, quantitative assessment of chromatogram peak size and shape, holistic process characterization approach, and a customized process economic evaluation. Overall, this study provides a comprehensive review of current trends and the path forward for implementing continuous downstream processing at the manufacturing scale.


Assuntos
Anticorpos Monoclonais , Reatores Biológicos , Biotecnologia , Animais , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Monoclonais/metabolismo , Biotecnologia/métodos , Biotecnologia/normas , Biotecnologia/tendências , Cromatografia , Humanos , Membranas Artificiais
6.
Biotechnol J ; 19(2): e2300338, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38375561

RESUMO

Chinese hamster ovary (CHO) cells are widely used to produce complex biopharmaceuticals. Improving their productivity is necessary to fulfill the growing demand for such products. One way to enhance productivity is by cultivating cells at high densities, but inhibitory by-products, such as metabolite derivatives from amino acid degradation, can hinder achieving high cell densities. This research examines the impact of these inhibitory by-products on high-density cultures. We cultured X1 and X2 CHO cell lines in a small-scale semi-perfusion system and introduced a mix of inhibitory by-products on day 10. The X1 and X2 cell lines were chosen for their varied responses to the by-products; X2 was susceptible, while X1 survived. Proteomics revealed that the X2 cell line presented changes in the proteins linked to apoptosis regulation, cell building block synthesis, cell growth, DNA repair, and energy metabolism. We later used the AB cell line, an apoptosis-resistant cell line, to validate the results. AB behaved similar to X1 under stress. We confirmed the activation of apoptosis in X2 using a caspase assay. This research provides insights into the mechanisms of cell death triggered by inhibitory by-products and can guide the optimization of CHO cell culture for biopharmaceutical manufacturing.


Assuntos
Aminoácidos , Apoptose , Cricetinae , Animais , Cricetulus , Células CHO , Apoptose/genética , Proliferação de Células
7.
Biotechnol Prog ; 38(6): e3288, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35818846

RESUMO

The manufacturing scale implementation of membrane chromatography to purify monoclonal antibodies has gradually increased with the shift in industry focus toward flexible manufacturing and disposable technologies. Membrane chromatography are used to remove process-related impurities such as host cell proteins (HCPs) and DNA, leachates, and endotoxins, with improved productivity and process flexibility. However, application of membrane chromatography to separate product-related variants such as charge variants has not gained major traction due to low-binding capacity. The work reported here demonstrates that a holistic process development strategy to optimize static binding (pH and salt concentration) and dynamic process (membrane loading, flowrate, and gradient length) parameters can alleviate the capacity limitations. The study employed high throughput screening tools and scale-down membranes for intermediate and polishing purification of the model monoclonal antibody. An optimized process consisting of anion exchange and cation exchange membrane chromatography reduced the acidic variants present in Protein A eluate from 89.5% to 19.2% with 71% recovery of the target protein. The membrane chromatography process also cleared HCP to below limit of detection with 6- to 30-fold higher membrane loading, compared to earlier reported values. The results confirm that membrane chromatography is effective in separating closely related product variants when supported by a well-defined process development strategy.


Assuntos
Anticorpos Monoclonais , Cloreto de Sódio , Anticorpos Monoclonais/química , Cromatografia por Troca Iônica/métodos , Ânions , Cátions
8.
MAbs ; 14(1): 2083465, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35737825

RESUMO

The reliable and cost-efficient manufacturing of monoclonal antibodies (mAbs) is essential to fulfil their ever-growing demand. Cell death in bioreactors reduces productivity and product quality, and is largely attributed to apoptosis. In perfusion bioreactors, this leads to the necessity of a bleed stream, which negatively affects the overall process economy. To combat this limitation, death-resistant Chinese hamster ovary cell lines were developed by simultaneously knocking out the apoptosis effector proteins Bak1, Bax, and Bok with CRISPR technology. These cell lines were cultured in fed-batch and perfusion bioreactors and compared to an unmodified control cell line. In fed-batch, the death-resistant cell lines showed higher cell densities and longer culture durations, lasting nearly a month under standard culture conditions. In perfusion, the death-resistant cell lines showed slower drops in viability and displayed an arrest in cell division after which cell size increased instead. Pertinently, the death-resistant cell lines demonstrated the ability to be cultured for several weeks without bleed, and achieved similar volumetric productivities at lower cell densities than that of the control cell line. Perfusion culture reduced fragmentation of the mAb produced, and the death-resistant cell lines showed increased glycosylation in the light chain in both bioreactor modes. These data demonstrate that rationally engineered death-resistant cell lines are ideal for mAb production in perfusion culture, negating the need to bleed the bioreactor whilst maintaining product quantity and quality.


Assuntos
Anticorpos Monoclonais , Reatores Biológicos , Animais , Anticorpos Monoclonais/farmacologia , Técnicas de Cultura Celular por Lotes , Células CHO , Cricetinae , Cricetulus , Perfusão
9.
Biotechnol J ; 16(3): e2000309, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33006254

RESUMO

The need to intensify downstream processing of monoclonal antibodies to complement the advances in upstream productivity has led to increased attention toward implementing membrane technologies. With the industry moving toward continuous operations and single use processes, membrane technologies show promise in fulfilling the industry needs due to their operational flexibility and ease of implementation. Recently, the applicability of membrane-based unit operations in integrating the downstream process has been explored. In this article, the major developments in the application of membrane-based technologies in the bioprocessing of monoclonal antibodies are reviewed. The recent progress toward developing intensified end-to-end bioprocesses and the critical role membrane technology will play in achieving this goal are focused upon.


Assuntos
Anticorpos Monoclonais , Biotecnologia , Reatores Biológicos , Tecnologia Farmacêutica
10.
Trends Biotechnol ; 20(4): 149-56, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11906746

RESUMO

Specific measurement of recombinant protein titer in a complex environment during industrial bioprocessing has traditionally relied on labor-intensive and time-consuming immunoassays. In recent years, however, developments in analytical technology have resulted in improved methods for protein product monitoring during bioprocessing. The choice of product-monitoring technology for a particular bioprocess will depend on a variety of assay factors and instrument-specific factors. In this article, we have compiled an overview of the advantages and disadvantages of the most commonly used technologies used: electrochemiluminescence, optical biosensors, rapid chromatography and nephelometry. The advantages of each technology for measuring both small and large recombinant therapeutic proteins are compared with a conventional enzyme-linked immunosorbent assay (ELISA) technique.


Assuntos
Técnicas de Sonda Molecular , Proteínas Recombinantes/análise , Técnicas Biossensoriais/economia , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/tendências , Eletroquímica/economia , Eletroquímica/instrumentação , Eletroquímica/tendências , Ensaio de Imunoadsorção Enzimática/economia , Ensaio de Imunoadsorção Enzimática/métodos , Ensaio de Imunoadsorção Enzimática/tendências , Humanos , Medições Luminescentes , Nefelometria e Turbidimetria/economia , Nefelometria e Turbidimetria/métodos , Nefelometria e Turbidimetria/tendências , Óptica e Fotônica/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA