Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38889728

RESUMO

Frontotemporal dementia (FTD) is the second most common cause of early-onset dementia after Alzheimer disease (AD). Efforts in the field mainly focus on familial forms of disease (fFTDs), while studies of the genetic etiology of sporadic FTD (sFTD) have been less common. In the current work, we analyzed 4,685 sFTD cases and 15,308 controls looking for common genetic determinants for sFTD. We found a cluster of variants at the MAPT (rs199443; p = 2.5 × 10-12, OR = 1.27) and APOE (rs6857; p = 1.31 × 10-12, OR = 1.27) loci and a candidate locus on chromosome 3 (rs1009966; p = 2.41 × 10-8, OR = 1.16) in the intergenic region between RPSA and MOBP, contributing to increased risk for sFTD through effects on expression and/or splicing in brain cortex of functionally relevant in-cis genes at the MAPT and RPSA-MOBP loci. The association with the MAPT (H1c clade) and RPSA-MOBP loci may suggest common genetic pleiotropy across FTD and progressive supranuclear palsy (PSP) (MAPT and RPSA-MOBP loci) and across FTD, AD, Parkinson disease (PD), and cortico-basal degeneration (CBD) (MAPT locus). Our data also suggest population specificity of the risk signals, with MAPT and APOE loci associations mainly driven by Central/Nordic and Mediterranean Europeans, respectively. This study lays the foundations for future work aimed at further characterizing population-specific features of potential FTD-discriminant APOE haplotype(s) and the functional involvement and contribution of the MAPT H1c haplotype and RPSA-MOBP loci to pathogenesis of sporadic forms of FTD in brain cortex.

2.
Brain ; 146(10): 4055-4064, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37100087

RESUMO

Transmembrane protein 106B (TMEM106B) is a tightly regulated glycoprotein predominantly localized to endosomes and lysosomes. Genetic studies have implicated TMEM106B haplotypes in the development of multiple neurodegenerative diseases with the strongest effect in frontotemporal lobar degeneration with TDP-43 pathology (FTLD-TDP), especially in progranulin (GRN) mutation carriers. Recently, cryo-electron microscopy studies showed that a C-terminal fragment (CTF) of TMEM106B (amino acid residues 120-254) forms amyloid fibrils in the brain of patients with FTLD-TDP, but also in brains with other neurodegenerative conditions and normal ageing brain. The functional implication of these fibrils and their relationship to the disease-associated TMEM106B haplotype remain unknown. We performed immunoblotting using a newly developed antibody to detect TMEM106B CTFs in the sarkosyl-insoluble fraction of post-mortem human brain tissue from patients with different proteinopathies (n = 64) as well as neuropathologically normal individuals (n = 10) and correlated the results with age and TMEM106B haplotype. We further compared the immunoblot results with immunohistochemical analyses performed in the same study population. Immunoblot analysis showed the expected ∼30 kDa band in the sarkosyl-insoluble fraction of frontal cortex tissue in at least some individuals with each of the conditions evaluated. Most patients with GRN mutations showed an intense band representing TMEM106B CTF, whereas in most neurologically normal individuals it was absent or much weaker. In the overall cohort, the presence of TMEM106B CTFs correlated strongly with both age (rs = 0.539, P < 0.001) and the presence of the TMEM106B risk haplotype (rs = 0.469, P < 0.001). Although there was a strong overall correlation between the results of immunoblot and immunohistochemistry (rs = 0.662, P < 0.001), 27 cases (37%) were found to have higher amounts of TMEM106B CTFs detected by immunohistochemistry, including most of the older individuals who were neuropathologically normal and individuals who carried two protective TMEM106B haplotypes. Our findings suggest that the formation of sarkosyl-insoluble TMEM106B CTFs is an age-related feature which is modified by TMEM106B haplotype, potentially underlying its disease-modifying effect. The discrepancies between immunoblot and immunohistochemistry in detecting TMEM106B pathology suggests the existence of multiple species of TMEM106B CTFs with possible biological relevance and disease implications.


Assuntos
Demência Frontotemporal , Degeneração Lobar Frontotemporal , Humanos , Demência Frontotemporal/patologia , Haplótipos , Microscopia Crioeletrônica , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Degeneração Lobar Frontotemporal/patologia , Encéfalo/patologia
3.
Acta Neuropathol ; 145(3): 285-302, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36527486

RESUMO

Several studies using cryogenic electron microscopy (cryo-EM) techniques recently reported the isolation and characterization of novel protein filaments, composed of a C-terminal fragment (CTF) of the endolysosomal transmembrane protein 106B (TMEM106B), from human post-mortem brain tissue with various neurodegenerative conditions and normal aging. Genetic variation in TMEM106B is known to influence the risk and presentation of several neurodegenerative diseases, especially frontotemporal dementia (FTD) caused by mutations in the progranulin gene (GRN). To further elucidate the significance of TMEM106B CTF, we performed immunohistochemistry with antibodies directed against epitopes within the filament-forming C-terminal region of TMEM106B. Accumulation of TMEM106B C-terminal immunoreactive (TMEM-ir) material was a common finding in all the conditions evaluated, including frontotemporal lobar degeneration with TDP-43 pathology (FTLD-TDP), Alzheimer's disease, tauopathies, synucleinopathies and neurologically normal aging. TMEM-ir material was present in a wide range of brain cell types and in a broad neuroanatomical distribution; however, there was no co-localization of TMEM-ir material with other neurodegenerative proteins in cellular inclusions. In most conditions, the presence and abundance of TMEM-ir aggregates correlated strongly with patient age and showed only a weak correlation with the TMEM106B haplotype or the primary pathological diagnosis. However, all patients with FTD caused by GRN mutations were found to have high levels of TMEM-ir material, including several who were relatively young (< 60 years). These findings suggest that the accumulation of TMEM106B CTF is a common age-related phenomenon, which may reflect lysosomal dysfunction. Although its significance in most neurodegenerative conditions remains uncertain, the consistent finding of extensive TMEM-ir material in cases of FTLD-TDP with GRN mutations further supports a pathomechanistic role of TMEM106B and lysosomal dysfunction in this specific disease population.


Assuntos
Demência Frontotemporal , Degeneração Lobar Frontotemporal , Doenças Neurodegenerativas , Humanos , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Peptídeos e Proteínas de Sinalização Intercelular , Doenças Neurodegenerativas/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Degeneração Lobar Frontotemporal/genética , Envelhecimento/genética
4.
Hosp Pharm ; 58(4): 389-391, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37360196

RESUMO

Purpose: Recent studies suggest a large percentage of post-surgical opioid prescriptions are not utilized. This surplus of opioids provides supply for diversion or entry into the waste cycle. Recommendations are available for general surgery procedures which may optimize prescribed quantity while maintaining patient satisfaction which this work was initiated to investigate. Methods: This retrospective patient survey was conducted with Institutional Review Committee approval following adjustments to discharge opioid prescription quantities in an individual General Surgeon practice. Patients were contacted via phone to assess the impact of the reduced opioid quantities. Patients were categorized based on whether they utilized the entire prescription or opioid remained. Data collected include baseline demographics, inpatient stay characteristics, opioid use patterns, and satisfaction with overall pain control. The primary endpoint was to determine if patients were satisfied with their pain control based on response. Secondary endpoints included if patient characteristics could be identified that signal larger opioid quantity use, and whether unused opioids were disposed. Results: Thirty patients utilized all opioid prescribed, 60 had some quantity remaining. Baseline data appear similar aside from age with younger patients using more opioid. Patients were satisfied with their overall pain control in 93% of respondents. A total of 960 opioid tablets (11.4 ± 4.8 tabs/patient) were not prescribed, 8% required refill. Opioid disposal yet to occur in 85% of patients. Conclusion: An evidence-based reduction in opioid discharge prescriptions following general surgery procedures resulted in nearly 1000 opioid tablets not being dispensed without having a negative impact on patient satisfaction.

5.
Genome Res ; 27(11): 1895-1903, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28887402

RESUMO

Identifying large expansions of short tandem repeats (STRs), such as those that cause amyotrophic lateral sclerosis (ALS) and fragile X syndrome, is challenging for short-read whole-genome sequencing (WGS) data. A solution to this problem is an important step toward integrating WGS into precision medicine. We developed a software tool called ExpansionHunter that, using PCR-free WGS short-read data, can genotype repeats at the locus of interest, even if the expanded repeat is larger than the read length. We applied our algorithm to WGS data from 3001 ALS patients who have been tested for the presence of the C9orf72 repeat expansion with repeat-primed PCR (RP-PCR). Compared against this truth data, ExpansionHunter correctly classified all (212/212, 95% CI [0.98, 1.00]) of the expanded samples as either expansions (208) or potential expansions (4). Additionally, 99.9% (2786/2789, 95% CI [0.997, 1.00]) of the wild-type samples were correctly classified as wild type by this method with the remaining three samples identified as possible expansions. We further applied our algorithm to a set of 152 samples in which every sample had one of eight different pathogenic repeat expansions, including those associated with fragile X syndrome, Friedreich's ataxia, and Huntington's disease, and correctly flagged all but one of the known repeat expansions. Thus, ExpansionHunter can be used to accurately detect known pathogenic repeat expansions and provides researchers with a tool that can be used to identify new pathogenic repeat expansions.


Assuntos
Esclerose Lateral Amiotrófica/genética , Expansão das Repetições de DNA , Sequenciamento Completo do Genoma/métodos , Algoritmos , Proteína C9orf72/genética , Bases de Dados Genéticas , Humanos , Medicina de Precisão , Sensibilidade e Especificidade , Software
6.
Neurocase ; 26(4): 211-219, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32602775

RESUMO

BACKGROUND: Highly penetrant inherited mutations in the prion protein gene (PRNP) offer a window to study the pathobiology of prion disorders. METHOD: Clinical, neuropsychological, and neuroimaging characterization of a kindred. RESULTS: Three of four mutation carriers have progressed to a frontotemporal dementia phenotype. Declines in neuropsychological function coincided with changes in FDG-PET at the identified onset of cognitive impairment. CONCLUSIONS AND RELEVANCE: Gene silencing treatments are on the horizon and when they become available, early detection will be crucial. Longitudinal studies involving familial mutation kindreds can offer important insights into the initial neuropsychological and neuroimaging changes necessary for early detection.


Assuntos
Demência Frontotemporal , Proteínas Priônicas/genética , Adulto , Demência Frontotemporal/diagnóstico por imagem , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Demência Frontotemporal/fisiopatologia , Humanos , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Mutagênese Insercional , Testes Neuropsicológicos , Oligopeptídeos , Linhagem , Tomografia por Emissão de Pósitrons , Sequências Repetitivas de Ácido Nucleico
7.
Acta Neuropathol ; 137(6): 879-899, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30739198

RESUMO

Frontotemporal lobar degeneration with neuronal inclusions of the TAR DNA-binding protein 43 (FTLD-TDP) represents the most common pathological subtype of FTLD. We established the international FTLD-TDP whole-genome sequencing consortium to thoroughly characterize the known genetic causes of FTLD-TDP and identify novel genetic risk factors. Through the study of 1131 unrelated Caucasian patients, we estimated that C9orf72 repeat expansions and GRN loss-of-function mutations account for 25.5% and 13.9% of FTLD-TDP patients, respectively. Mutations in TBK1 (1.5%) and other known FTLD genes (1.4%) were rare, and the disease in 57.7% of FTLD-TDP patients was unexplained by the known FTLD genes. To unravel the contribution of common genetic factors to the FTLD-TDP etiology in these patients, we conducted a two-stage association study comprising the analysis of whole-genome sequencing data from 517 FTLD-TDP patients and 838 controls, followed by targeted genotyping of the most associated genomic loci in 119 additional FTLD-TDP patients and 1653 controls. We identified three genome-wide significant FTLD-TDP risk loci: one new locus at chromosome 7q36 within the DPP6 gene led by rs118113626 (p value = 4.82e - 08, OR = 2.12), and two known loci: UNC13A, led by rs1297319 (p value = 1.27e - 08, OR = 1.50) and HLA-DQA2 led by rs17219281 (p value = 3.22e - 08, OR = 1.98). While HLA represents a locus previously implicated in clinical FTLD and related neurodegenerative disorders, the association signal in our study is independent from previously reported associations. Through inspection of our whole-genome sequence data for genes with an excess of rare loss-of-function variants in FTLD-TDP patients (n ≥ 3) as compared to controls (n = 0), we further discovered a possible role for genes functioning within the TBK1-related immune pathway (e.g., DHX58, TRIM21, IRF7) in the genetic etiology of FTLD-TDP. Together, our study based on the largest cohort of unrelated FTLD-TDP patients assembled to date provides a comprehensive view of the genetic landscape of FTLD-TDP, nominates novel FTLD-TDP risk loci, and strongly implicates the immune pathway in FTLD-TDP pathogenesis.


Assuntos
Proteínas do Tecido Nervoso/genética , Proteinopatias TDP-43/genética , Idoso , Expansão das Repetições de DNA , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Feminino , Lobo Frontal/metabolismo , Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/imunologia , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Antígenos HLA-DQ/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Mutação com Perda de Função , Masculino , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/fisiologia , Canais de Potássio/genética , Progranulinas/genética , Progranulinas/fisiologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas/genética , Proteínas/fisiologia , RNA Mensageiro/biossíntese , Fatores de Risco , Análise de Sequência de RNA , Sociedades Científicas , Proteinopatias TDP-43/imunologia , População Branca/genética
9.
Acta Neuropathol ; 130(1): 77-92, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25943890

RESUMO

Frontotemporal lobar degeneration with TAR DNA-binding protein 43 inclusions (FTLD-TDP) is the most common pathology associated with frontotemporal dementia (FTD). Repeat expansions in chromosome 9 open reading frame 72 (C9ORF72) and mutations in progranulin (GRN) are the major known genetic causes of FTLD-TDP; however, the genetic etiology in the majority of FTLD-TDP remains unexplained. In this study, we performed whole-genome sequencing in 104 pathologically confirmed FTLD-TDP patients from the Mayo Clinic brain bank negative for C9ORF72 and GRN mutations and report on the contribution of rare single nucleotide and copy number variants in 21 known neurodegenerative disease genes. Interestingly, we identified 5 patients (4.8 %) with variants in optineurin (OPTN) and TANK-binding kinase 1 (TBK1) that are predicted to be highly pathogenic, including two double mutants. Case A was a compound heterozygote for mutations in OPTN, carrying the p.Q235* nonsense and p.A481V missense mutation in trans, while case B carried a deletion of OPTN exons 13-15 (p.Gly538Glufs*27) and a loss-of-function mutation (p.Arg117*) in TBK1. Cases C-E carried heterozygous missense mutations in TBK1, including the p.Glu696Lys mutation which was previously reported in two amyotrophic lateral sclerosis (ALS) patients and is located in the OPTN binding domain. Quantitative mRNA expression and protein analysis in cerebellar tissue showed a striking reduction of OPTN and/or TBK1 expression in 4 out of 5 patients supporting pathogenicity in these specific patients and suggesting a loss-of-function disease mechanism. Importantly, neuropathologic examination showed FTLD-TDP type A in the absence of motor neuron disease in 3 pathogenic mutation carriers. In conclusion, we highlight TBK1 as an important cause of pure FTLD-TDP, identify the first OPTN mutations in FTLD-TDP, and suggest a potential oligogenic basis for at least a subset of FTLD-TDP patients. Our data further add to the growing body of evidence linking ALS and FTD and suggest a key role for the OPTN/TBK1 pathway in these diseases.


Assuntos
Degeneração Lobar Frontotemporal/genética , Mutação , Proteínas Serina-Treonina Quinases/genética , Fator de Transcrição TFIIIA/genética , Idoso , Idoso de 80 Anos ou mais , Western Blotting , Encéfalo/metabolismo , Encéfalo/patologia , Proteínas de Ciclo Celular , Estudos de Coortes , Variações do Número de Cópias de DNA , Feminino , Degeneração Lobar Frontotemporal/metabolismo , Degeneração Lobar Frontotemporal/patologia , Expressão Gênica , Humanos , Imuno-Histoquímica , Masculino , Proteínas de Membrana Transportadoras , Doença dos Neurônios Motores/genética , Doença dos Neurônios Motores/metabolismo , Doença dos Neurônios Motores/patologia , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/metabolismo , Análise de Sequência de DNA , Fator de Transcrição TFIIIA/metabolismo
10.
Eur J Neurol ; 22(2): 328-333, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25311247

RESUMO

BACKGROUND AND PURPOSE: Hereditary diffuse leukoencephalopathy with spheroids (HDLS) is a devastating, hereditary white matter (WM) disorder with heterogeneous neuropsychiatric features. Colony stimulating factor 1 receptor (CSF1R) mutations were looked for in primary progressive multiple sclerosis (PPMS) patients and the clinical features of a family with a novel CSF1R mutation are reported. METHODS: CSF1R exons 12-22 in a cohort of 220 PPMS patients from the Swedish and Norwegian national multiple sclerosis registries were sequenced. RESULTS: One patient had a novel mutation, c.2562T>A; p.Asn854Lys, in the CSF1R gene. Her symptoms started at the age of 29 years with insidious onset of pyramidal weakness in the left leg. The cerebrospinal fluid examination showed four intrathecal immunoglobulin G bands. A magnetic resonance imaging scan performed 4 years after symptom onset demonstrated patchy deep WM lesions. She was diagnosed as having PPMS and treated with intramuscular interferon beta 1a. Due to slow disease progression, the development of memory decline and cerebellar signs, she was given subcutaneous interferon beta 1a without any benefit. The updated pedigree indicated that five siblings also had the CSF1R gene mutation; one was diagnosed with PPMS. Six more distant relatives also had a neurological disorder; four were clinically diagnosed with PPMS. CONCLUSIONS: Our study indicates that a chronic course of HDLS may mimic PPMS. Genetic testing for CSF1R gene mutations in PPMS cases with a positive family history of neurological disorders may establish the diagnosis of HDLS.


Assuntos
Esclerose Múltipla Crônica Progressiva/genética , Receptor de Fator Estimulador de Colônias de Macrófagos/genética , Sistema de Registros , Adulto , Éxons , Feminino , Humanos , Leucoencefalopatias/diagnóstico , Leucoencefalopatias/genética , Esclerose Múltipla Crônica Progressiva/diagnóstico , Mutação , Noruega , Linhagem , Fenótipo , Irmãos , Suécia
11.
Neurogenetics ; 15(1): 23-30, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24135862

RESUMO

Idiopathic basal ganglia calcification (IBGC) is characterized by bilateral calcification of the basal ganglia associated with a spectrum of neuropsychiatric and motor syndromes. In this study, we set out to determine the frequency of the recently identified IBGC gene SLC20A2 in 27 IBGC cases from the Mayo Clinic Florida Brain Bank using both Sanger sequencing and TaqMan copy number analysis to cover the complete spectrum of possible mutations. We identified SLC20A2 pathogenic mutations in two of the 27 cases of IBGC (7 %). Sequencing analysis identified a p.S113* nonsense mutation in SLC20A2 in one case. TaqMan copy number analysis of SLC20A2 further revealed a genomic deletion in a second case, which was part of a large previously reported Canadian IBGC family with dystonia. Subsequent whole-genome sequencing in this family revealed a 563,256-bp genomic deletion with precise breakpoints on chromosome 8 affecting multiple genes including SLC20A2 and the known dystonia-related gene THAP1. The deletion co-segregated with disease in all family members. The deletion of THAP1 in addition to SLC20A2 in the Canadian IBGC family may contribute to the severe and early onset dystonia in this family. The identification of an SLC20A2 genomic deletion in a familial form of IBGC demonstrates that reduced SLC20A2 in the absence of mutant protein is sufficient to cause neurodegeneration and that previously reported SLC20A2 mutation frequencies may be underestimated.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Gânglios da Base/patologia , Calcinose/genética , Proteínas de Ligação a DNA/genética , Distonia/genética , Deleção de Genes , Proteínas Nucleares/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/genética , Idoso , Idoso de 80 Anos ou mais , Encefalopatias/genética , Calcinose/patologia , Canadá , Deleção Cromossômica , Códon sem Sentido , Distonia/patologia , Exoma , Saúde da Família , Feminino , Genoma , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Linhagem , Análise de Sequência de DNA
12.
Hum Mol Genet ; 21(15): 3500-12, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22556362

RESUMO

Rare mutations in the gene encoding for tau (MAPT, microtubule-associated protein tau) cause frontotemporal dementia-spectrum (FTD-s) disorders, including FTD, progressive supranuclear palsy (PSP) and corticobasal syndrome, and a common extended haplotype spanning across the MAPT locus is associated with increased risk of PSP and Parkinson's disease. We identified a rare tau variant (p.A152T) in a patient with a clinical diagnosis of PSP and assessed its frequency in multiple independent series of patients with neurodegenerative conditions and controls, in a total of 15 369 subjects. Tau p.A152T significantly increases the risk for both FTD-s (n = 2139, OR = 3.0, CI: 1.6-5.6, P = 0.0005) and Alzheimer's disease (AD) (n = 3345, OR = 2.3, CI: 1.3-4.2, P = 0.004) compared with 9047 controls. Functionally, p.A152T (i) decreases the binding of tau to microtubules and therefore promotes microtubule assembly less efficiently; and (ii) reduces the tendency to form abnormal fibers. However, there is a pronounced increase in the formation of tau oligomers. Importantly, these findings suggest that other regions of the tau protein may be crucial in regulating normal function, as the p.A152 residue is distal to the domains considered responsible for microtubule interactions or aggregation. These data provide both the first genetic evidence and functional studies supporting the role of MAPT p.A152T as a rare risk factor for both FTD-s and AD and the concept that rare variants can increase the risk for relatively common, complex neurodegenerative diseases, but since no clear significance threshold for rare genetic variation has been established, some caution is warranted until the findings are further replicated.


Assuntos
Doença de Alzheimer/genética , Demência Frontotemporal/genética , Variação Genética , Proteínas tau/genética , Idoso , Doença de Alzheimer/epidemiologia , Demência Frontotemporal/epidemiologia , Predisposição Genética para Doença , Genótipo , Haplótipos , Humanos , Pessoa de Meia-Idade , Risco
13.
Neurocase ; 20(1): 69-86, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-23121543

RESUMO

OBJECTIVES: Patients with frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17) may be agraphic. The study aimed at characterizing agraphia in individuals with a P301L MAPT mutation. METHODS: Two pairs of siblings with FTDP-17 were longitudinally examined for agraphia in relation to language and cognitive deficits. RESULTS: All patients presented with dysexecutive agraphia. In addition, in the first pair of siblings one sibling demonstrated spatial agraphia with less pronounced allographic agraphia and the other sibling had aphasic agraphia. Aphasic agraphia was also present in one sibling from the second pair. CONCLUSION: Agraphia associated with FTDP-17 is very heterogeneous.


Assuntos
Agrafia/diagnóstico , Agrafia/genética , Cromossomos Humanos Par 17 , Demência Frontotemporal/genética , Transtornos Parkinsonianos/genética , Proteínas tau/genética , Encéfalo/patologia , Progressão da Doença , Feminino , Demência Frontotemporal/patologia , Demência Frontotemporal/psicologia , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Mutação , Transtornos Parkinsonianos/patologia , Transtornos Parkinsonianos/psicologia
14.
Eur Neurol ; 72(1-2): 64-71, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24861139

RESUMO

BACKGROUND: Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are complex neurodegenerative disorders that can be either sporadic or familial and can overlap clinically and pathologically. We present the first Central-Eastern European family with ALS-FTD syndrome due to a C9ORF72 repeat expansion. METHODS: We studied a family consisting of 37 family members, 6 of whom were genetically evaluated for C9ORF72 expansions. Family members were evaluated clinically, by history, and by chart review. RESULTS: Overall, 5 generations of the family were studied, and 6 affected family members were identified. All affected members were females and had a different clinical presentation, which was ALS, FTD or both. Among the genetically evaluated subjects, 5 carried a C9ORF72 expansion; 4 of these individuals remain clinically unaffected. CONCLUSION: Our report reveals that the hexanucleotide repeat expansion of C9ORF72, which is the most common genetic cause of ALS-FTD complex disorder, is also present in Central-Eastern Europe. Further studies are needed to assess the frequency of this expansion in the Polish population with familial as well as sporadic ALS, FTD and the ALS-FTD complex disorder.


Assuntos
Esclerose Lateral Amiotrófica/genética , Expansão das Repetições de DNA , Demência Frontotemporal/genética , Proteínas/genética , Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/fisiopatologia , Encéfalo/patologia , Proteína C9orf72 , Análise Mutacional de DNA , Família , Feminino , Demência Frontotemporal/patologia , Demência Frontotemporal/fisiopatologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Linhagem , Polônia , População Branca/genética
15.
Am J Health Syst Pharm ; 81(9): e261-e267, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38146957

RESUMO

PURPOSE: Inpatient glycemic management typically involves use of point-of-care (POC) glucose measurements to inform insulin dosing decisions. This study evaluated a hybrid monitoring protocol using real-time continuous glucose monitoring (rtCGM) supplemented with POC testing at a community hospital. METHODS: Adult inpatients receiving POC glucose testing were monitored using rtCGM in a telemetry unit. The hybrid monitoring protocol required a once-daily POC test but otherwise primarily relied on rtCGM values for insulin dosing decisions. Outcomes assessment included surveillance error grid (SEG) and Clarke Error Grid (CEG) analysis results, the mean absolute relative difference (MARD) for available rtCGM-POC value pairs before and after study protocol application, the number of POC tests avoided, and the number of hypoglycemic events involving a blood glucose value of <70 mg/dL identified by rtCGM and POC values. RESULTS: Data were collected from 30 inpatients (the mean age was 69.4 years, 77% were female, 80% had type 2 diabetes, and 37% were at-home insulin users). With the protocol applied, a total of 202 rtCGM-POC pairs produced a MARD of 12.5%. SEG analysis showed 2 pairs in the "moderate" risk category, with all other pairs in the "none" or "slight" risk categories. CEG analysis showed 99% of paired values to be in the clinically acceptable range. Six hypoglycemic events in 5 patients were resolved without incident. Three hundred three POC tests were avoided, a 60% reduction for the study duration. CONCLUSION: Use of a hybrid monitoring protocol of rtCGM and POC testing in a community hospital demonstrated sustained rtCGM accuracy and was found to reduce the frequency of POC testing to manage inpatient glycemia.


Assuntos
Glicemia , Diabetes Mellitus Tipo 2 , Adulto , Humanos , Feminino , Idoso , Masculino , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Automonitorização da Glicemia/métodos , Monitoramento Contínuo da Glicose , Hospitais Comunitários , Hipoglicemiantes/uso terapêutico , Insulina , Testes Imediatos
16.
J Neurol ; 271(7): 4168-4179, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38583104

RESUMO

BACKGROUND AND OBJECTIVES: Nonfluent variant primary progressive aphasia (nfvPPA) and primary progressive apraxia of speech (PPAOS) can be precursors to corticobasal syndrome (CBS). Details on their progression remain unclear. We aimed to examine the clinical and neuroimaging evolution of nfvPPA and PPAOS into CBS. METHODS: We conducted a retrospective longitudinal study in 140 nfvPPA or PPAOS patients and applied the consensus criteria for possible and probable CBS for every visit, evaluating limb rigidity, akinesia, limb dystonia, myoclonus, ideomotor apraxia, alien limb phenomenon, and nonverbal oral apraxia (NVOA). Given the association of NVOA with AOS, we also modified the CBS criteria by excluding NVOA and assigned every patient to either a progressors or non-progressors group. We evaluated the frequency of every CBS feature by year from disease onset, and assessed gray and white matter volume loss using SPM12. RESULTS: Asymmetric akinesia, NVOA, and limb apraxia were the most common CBS features that developed; while limb dystonia, myoclonus, and alien limb were rare. Eighty-two patients progressed to possible CBS; only four to probable CBS. nfvPPA and PPAOS had a similar proportion of progressors, although nfvPPA progressed to CBS earlier (p-value = 0.046), driven by an early appearance of limb apraxia (p-value = 0.0041). The non-progressors and progressors both showed premotor/motor cortex involvement at baseline, with spread into prefrontal cortex over time. DISCUSSION: An important proportion of patients with nfvPPA and PPAOS progress to possible CBS, while they rarely develop features of probable CBS even after long follow-up.


Assuntos
Apraxias , Progressão da Doença , Afasia Primária Progressiva não Fluente , Humanos , Masculino , Feminino , Estudos Longitudinais , Idoso , Pessoa de Meia-Idade , Apraxias/etiologia , Apraxias/fisiopatologia , Apraxias/diagnóstico por imagem , Estudos Retrospectivos , Afasia Primária Progressiva não Fluente/fisiopatologia , Afasia Primária Progressiva não Fluente/diagnóstico por imagem , Imageamento por Ressonância Magnética
17.
Alzheimers Res Ther ; 16(1): 66, 2024 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-38539243

RESUMO

BACKGROUND: Pathogenic heterozygous mutations in the progranulin gene (GRN) are a key cause of frontotemporal dementia (FTD), leading to significantly reduced biofluid concentrations of the progranulin protein (PGRN). This has led to a number of ongoing therapeutic trials aiming to treat this form of FTD by increasing PGRN levels in mutation carriers. However, we currently lack a complete understanding of factors that affect PGRN levels and potential variation in measurement methods. Here, we aimed to address this gap in knowledge by systematically reviewing published literature on biofluid PGRN concentrations. METHODS: Published data including biofluid PGRN concentration, age, sex, diagnosis and GRN mutation were collected for 7071 individuals from 75 publications. The majority of analyses (72%) had focused on plasma PGRN concentrations, with many of these (56%) measured with a single assay type (Adipogen) and so the influence of mutation type, age at onset, sex, and diagnosis were investigated in this subset of the data. RESULTS: We established a plasma PGRN concentration cut-off between pathogenic mutation carriers and non-carriers of 74.8 ng/mL using the Adipogen assay based on 3301 individuals, with a CSF concentration cut-off of 3.43 ng/mL. Plasma PGRN concentration varied by GRN mutation type as well as by clinical diagnosis in those without a GRN mutation. Plasma PGRN concentration was significantly higher in women than men in GRN mutation carriers (p = 0.007) with a trend in non-carriers (p = 0.062), and there was a significant but weak positive correlation with age in both GRN mutation carriers and non-carriers. No significant association was seen with weight or with TMEM106B rs1990622 genotype. However, higher plasma PGRN levels were seen in those with the GRN rs5848 CC genotype in both GRN mutation carriers and non-carriers. CONCLUSIONS: These results further support the usefulness of PGRN concentration for the identification of the large majority of pathogenic mutations in the GRN gene. Furthermore, these results highlight the importance of considering additional factors, such as mutation type, sex and age when interpreting PGRN concentrations. This will be particularly important as we enter the era of trials for progranulin-associated FTD.


Assuntos
Demência Frontotemporal , Masculino , Humanos , Feminino , Progranulinas/genética , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Virulência , Mutação/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética
18.
medRxiv ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38978643

RESUMO

Frontotemporal lobar degeneration with neuronal inclusions of the TAR DNA-binding protein 43 (FTLD-TDP) is a fatal neurodegenerative disorder with only a limited number of risk loci identified. We report our comprehensive genome-wide association study as part of the International FTLD-TDP Whole-Genome Sequencing Consortium, including 985 cases and 3,153 controls, and meta-analysis with the Dementia-seq cohort, compiled from 26 institutions/brain banks in the United States, Europe and Australia. We confirm UNC13A as the strongest overall FTLD-TDP risk factor and identify TNIP1 as a novel FTLD-TDP risk factor. In subgroup analyses, we further identify for the first time genome-wide significant loci specific to each of the three main FTLD-TDP pathological subtypes (A, B and C), as well as enrichment of risk loci in distinct tissues, brain regions, and neuronal subtypes, suggesting distinct disease aetiologies in each of the subtypes. Rare variant analysis confirmed TBK1 and identified VIPR1 , RBPJL , and L3MBTL1 as novel subtype specific FTLD-TDP risk genes, further highlighting the role of innate and adaptive immunity and notch signalling pathway in FTLD-TDP, with potential diagnostic and novel therapeutic implications.

19.
J Neurochem ; 126(6): 781-91, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23742080

RESUMO

Frontotemporal lobar degeneration (FTLD) is the second leading cause of dementia in individuals under age 65. In many patients, the predominant pathology includes neuronal cytoplasmic or intranuclear inclusions of ubiquitinated TAR DNA binding protein 43 (FTLD-TDP). Recently, a genome-wide association study identified the first FTLD-TDP genetic risk factor, in which variants in and around the TMEM106B gene (top SNP rs1990622) were significantly associated with FTLD-TDP risk. Intriguingly, the most significant association was in FTLD-TDP patients carrying progranulin (GRN) mutations. Here, we investigated to what extent the coding variant, rs3173615 (p.T185S) in linkage disequilibrium with rs1990622, affects progranulin protein (PGRN) biology and transmembrane protein 106 B (TMEM106B) regulation. First, we confirmed the association of TMEM106B variants with FTLD-TDP in a new cohort of GRN mutation carriers. We next generated and characterized a TMEM106B-specific antibody for investigation of this protein. Enzyme-linked immunoassay analysis of progranulin protein levels showed similar effects upon T185 and S185 TMEM106B over-expression. However, over-expression of T185 consistently led to higher TMEM106B protein levels than S185. Cycloheximide treatment experiments revealed that S185 degrades faster than T185 TMEM106B, potentially due to differences in N-glycosylation at residue N183. Together, our results provide a potential mechanism by which TMEM106B variants lead to differences in FTLD-TDP risk. We studied the p.T185S TMEM106B genetic variant previously implicated in frontotemporal dementia with TAR DNA binding protein 43 pathology caused by progranulin mutations. Our cell culture studies provide evidence that the protective S185 isoform is degraded more rapidly than T185 TMEM106B, potentially due to differences in glycosylation. These findings suggest that low TMEM106B levels might protect against FTLD-TDP in these patients.


Assuntos
Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Idoso , Western Blotting , Células Cultivadas , Estudos de Coortes , DNA Complementar/biossíntese , DNA Complementar/genética , Ensaio de Imunoadsorção Enzimática , Feminino , Imunofluorescência , Genótipo , Glicosilação , Células HeLa , Humanos , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Peptídeos e Proteínas de Sinalização Intercelular/genética , Isomerismo , Lisossomos/metabolismo , Masculino , Mutagênese/genética , Mutação/genética , Polimorfismo Genético/genética , Polimorfismo de Nucleotídeo Único/genética , Progranulinas , Reação em Cadeia da Polimerase em Tempo Real
20.
Hum Mol Genet ; 20(16): 3207-12, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21610160

RESUMO

Expanded glutamine repeats of the ataxin-2 (ATXN2) protein cause spinocerebellar ataxia type 2 (SCA2), a rare neurodegenerative disorder. More recent studies have suggested that expanded ATXN2 repeats are a genetic risk factor for amyotrophic lateral sclerosis (ALS) via an RNA-dependent interaction with TDP-43. Given the phenotypic diversity observed in SCA2 patients, we set out to determine the polymorphic nature of the ATXN2 repeat length across a spectrum of neurodegenerative disorders. In this study, we genotyped the ATXN2 repeat in 3919 neurodegenerative disease patients and 4877 healthy controls and performed logistic regression analysis to determine the association of repeat length with the risk of disease. We confirmed the presence of a significantly higher number of expanded ATXN2 repeat carriers in ALS patients compared with healthy controls (OR = 5.57; P= 0.001; repeat length >30 units). Furthermore, we observed significant association of expanded ATXN2 repeats with the development of progressive supranuclear palsy (OR = 5.83; P= 0.004; repeat length >30 units). Although expanded repeat carriers were also identified in frontotemporal lobar degeneration, Alzheimer's and Parkinson's disease patients, these were not significantly more frequent than in controls. Of note, our study identified a number of healthy control individuals who harbor expanded repeat alleles (31-33 units), which suggests caution should be taken when attributing specific disease phenotypes to these repeat lengths. In conclusion, our findings confirm the role of ATXN2 as an important risk factor for ALS and support the hypothesis that expanded ATXN2 repeats may predispose to other neurodegenerative diseases, including progressive supranuclear palsy.


Assuntos
Degeneração Neural/genética , Proteínas do Tecido Nervoso/genética , Sequências Repetitivas de Ácido Nucleico/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Ataxinas , Estudos de Coortes , Demografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Degeneração Neural/patologia , Expansão das Repetições de Trinucleotídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA