Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biomed Opt ; 12(3): 034034, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17614742

RESUMO

Exhaled nitric oxide (NO) is an important biomarker in asthma and other respiratory disorders. The optical performance of a NOCO(2) sensor employing integrated cavity output spectroscopy (ICOS) with a quantum cascade laser operating at 5.22 microm capable of real-time NO and CO(2) measurements in a single breath cycle is reported. A NO noise-equivalent concentration of 0.4 ppb within a 1-sec integration time is achieved. The off-axis ICOS sensor performance is compared to a chemiluminescent NO analyzer and a nondispersive infrared (NDIR) CO(2) absorption capnograph. Differences between the gas analyzers are assessed by the Bland-Altman method to estimate the expected variability between the gas sensors. The off-axis ICOS sensor measurements are in good agreement with the data acquired with the two commercial gas analyzers. This work demonstrates the performance characteristics and merits of mid-infrared spectroscopy for exhaled breath analysis.


Assuntos
Testes Respiratórios/instrumentação , Dióxido de Carbono/análise , Lasers , Óxido Nítrico/análise , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/metabolismo , Análise Espectral/instrumentação , Adulto , Idoso , Testes Respiratórios/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Troca Gasosa Pulmonar , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Análise Espectral/métodos , Integração de Sistemas
2.
J Breath Res ; 1(1): 014001, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21383427

RESUMO

Laser absorption spectroscopy (LAS) in the mid-infrared region offers a promising new effective technique for the quantitative analysis of trace gases in human breath. LAS enables sensitive, selective detection, quantification and monitoring in real time, of gases present in breath. This review summarizes some of the recent advances in LAS based on semiconductor lasers and optical detection techniques for clinically relevant exhaled gas analysis in breath, specifically such molecular biomarkers as nitric oxide, ammonia, carbon monoxide, ethane, carbonyl sulfide, formaldehyde and acetone.

3.
Appl Opt ; 46(33): 8202-10, 2007 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-18026560

RESUMO

The development of an interband cascade laser (ICL) based spectroscopic trace-gas sensor for the simultaneous detection of two atmospheric trace gases is reported. The sensor performance was evaluated using two ICLs capable of targeting formaldehyde (H2CO) and ethane (C2H6). Minimum detection limits of 3.5 ppbV for H2CO and 150 pptV for C2H6 was demonstrated with a 1 s integration time. The sensor was deployed for field measurements of H2CO, and laboratory quantification of both formaldehyde and ethane are reported. A cross comparison of the atmospheric concentration data for H2CO with data collected by a collocated commercial H2CO sensor employing Hantzsch reaction based fluorometric detection was performed. These results show excellent agreement between these two different approaches for trace-gas quantification. In addition, laboratory experiments for dual gas quantification show accurate, fast response with no crosstalk between the two gas channels.

4.
Appl Opt ; 43(11): 2257-66, 2004 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-15098827

RESUMO

Tunable-laser absorption spectroscopy in the mid-IR spectral region is a sensitive analytical technique for trace-gas quantification. The detection of nitric oxide (NO) in exhaled breath is of particular interest in the diagnosis of lower-airway inflammation associated with a number of lung diseases and illnesses. A gas analyzer based on a continuous-wave mid-IR quantum cascade laser operating at approximately 5.2 microm and on off-axis integrated cavity output spectroscopy (ICOS) has been developed to measure NO concentrations in human breath. A compact sample cell, 5.3 cm in length and with a volume of < 80 cm3, that is suitable for on-line and off-line measurements during a single breath cycle, has been designed and tested. A noise-equivalent (signal-to-noise ratio of 1) sensitivity of 10 parts in 10(9) by volume (ppbv) of NO was achieved. The combination of ICOS with wavelength modulation resulted in a 2-ppbv noise-equivalent sensitivity. The total data acquisition and averaging time was 15 s in both cases. The feasibility of detecting NO in expired human breath as a potential noninvasive medical diagnostic tool is discussed.


Assuntos
Lasers , Óxido Nítrico/análise , Espectrofotometria Infravermelho/instrumentação , Espectrofotometria Infravermelho/métodos , Transdutores , Expiração/fisiologia , Estudos de Viabilidade , Miniaturização , Óxido Nítrico/metabolismo , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA