Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Int J Mol Sci ; 22(4)2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670533

RESUMO

Hereditary hemorrhagic telangiectasia type 1 (HHT1) is a severe vascular disorder caused by mutations in the TGFß/BMP co-receptor endoglin. Endoglin haploinsufficiency results in vascular malformations and impaired neoangiogenesis. Furthermore, HHT1 patients display an impaired immune response. To date it is not fully understood how endoglin haploinsufficient immune cells contribute to HHT1 pathology. Therefore, we investigated the immune response during tissue repair in Eng+/- mice, a model for HHT1. Eng+/- mice exhibited prolonged infiltration of macrophages after experimentally induced myocardial infarction. Moreover, there was an increased number of inflammatory M1-like macrophages (Ly6Chigh/CD206-) at the expense of reparative M2-like macrophages (Ly6Clow/CD206+). Interestingly, HHT1 patients also showed an increased number of inflammatory macrophages. In vitro analysis revealed that TGFß-induced differentiation of Eng+/- monocytes into M2-like macrophages was blunted. Inhibiting BMP signaling by treating monocytes with LDN-193189 normalized their differentiation. Finally, LDN treatment improved heart function after MI and enhanced vascularization in both wild type and Eng+/- mice. The beneficial effect of LDN was also observed in the hind limb ischemia model. While blood flow recovery was hampered in vehicle-treated animals, LDN treatment improved tissue perfusion recovery in Eng+/- mice. In conclusion, BMPR kinase inhibition restored HHT1 macrophage imbalance in vitro and improved tissue repair after ischemic injury in Eng+/- mice.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas/antagonistas & inibidores , Modelos Animais de Doenças , Endoglina/metabolismo , Infarto do Miocárdio/prevenção & controle , Pirazóis/farmacologia , Pirimidinas/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Receptores de Proteínas Morfogenéticas Ósseas/genética , Receptores de Proteínas Morfogenéticas Ósseas/metabolismo , Células Cultivadas , Endoglina/genética , Feminino , Heterozigoto , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Telangiectasia Hemorrágica Hereditária/genética , Telangiectasia Hemorrágica Hereditária/imunologia , Telangiectasia Hemorrágica Hereditária/metabolismo , Cicatrização/genética
2.
Circulation ; 139(12): 1530-1547, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30586758

RESUMO

BACKGROUND: Defective systemic and local iron metabolism correlates with cardiac disorders. Hepcidin, a master iron sensor, actively tunes iron trafficking. We hypothesized that hepcidin could play a key role to locally regulate cardiac homeostasis after acute myocardial infarction. METHODS: Cardiac repair was analyzed in mice harboring specific cardiomyocyte or myeloid cell deficiency of hepcidin and challenged with acute myocardial infarction. RESULTS: We found that the expression of hepcidin was elevated after acute myocardial infarction and the specific deletion of hepcidin in cardiomyocytes failed to improve cardiac repair and function. However, transplantation of bone marrow-derived cells from hepcidin-deficient mice ( Hamp-/-) or from mice with specific deletion of hepcidin in myeloid cells (LysMCRE/+/ Hampf/f) improved cardiac function. This effect was associated with a robust reduction in the infarct size and tissue fibrosis in addition to favoring cardiomyocyte renewal. Macrophages lacking hepcidin promoted cardiomyocyte proliferation in a prototypic model of apical resection-induced cardiac regeneration in neonatal mice. Interleukin (IL)-6 increased hepcidin levels in inflammatory macrophages. Hepcidin deficiency enhanced the number of CD45+/CD11b+/F4/80+/CD64+/MHCIILow/chemokine (C-C motif) receptor 2 (CCR2)+ inflammatory macrophages and fostered signal transducer and activator of transcription factor-3 (STAT3) phosphorylation, an instrumental step in the release of IL-4 and IL-13. The combined genetic suppression of hepcidin and IL-4/IL-13 in macrophages failed to improve cardiac function in both adult and neonatal injured hearts. CONCLUSIONS: Hepcidin refrains macrophage-induced cardiac repair and regeneration through modulation of IL-4/IL-13 pathways.


Assuntos
Coração/fisiologia , Hepcidinas/metabolismo , Macrófagos/metabolismo , Infarto do Miocárdio/patologia , Regeneração , Animais , Animais Recém-Nascidos , Remodelamento Atrial/fisiologia , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Hepcidinas/genética , Interleucina-13/metabolismo , Interleucina-4/metabolismo , Macrófagos/citologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Infarto do Miocárdio/terapia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Remodelação Ventricular/fisiologia
3.
Stem Cells ; 32(1): 231-43, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24105925

RESUMO

Upregulation of hypoxia-inducible transcription factor-1α (HIF-1α), through prolyl-hydroxylase domain protein (PHD) inhibition, can be thought of as a master switch that coordinates the expression of a wide repertoire of genes involved in regulating vascular growth and remodeling. We aimed to unravel the effect of specific PHD2 isoform silencing in cell-based strategies designed to promote therapeutic revascularization in patients with critical limb ischemia (CLI). PHD2 mRNA levels were upregulated whereas that of HIF-1α were downregulated in blood cells from patients with CLI. We therefore assessed the putative beneficial effects of PHD2 silencing on human bone marrow-derived mesenchymal stem cells (hBM-MSC)-based therapy. PHD2 silencing enhanced hBM-MSC therapeutic effect in an experimental model of CLI in Nude mice, through an upregulation of HIF-1α and its target gene, VEGF-A. In addition, PHD2-transfected hBM-MSC displayed higher protection against apoptosis in vitro and increased rate of survival in the ischemic tissue, as assessed by Fluorescence Molecular Tomography. Cotransfection with HIF-1α or VEGF-A short interfering RNAs fully abrogated the beneficial effect of PHD2 silencing on the proangiogenic capacity of hBM-MSC. We finally investigated the effect of PHD2 inhibition on the revascularization potential of ischemic targeted tissues in the diabetic pathological context. Inhibition of PHD-2 with shRNAs increased postischemic neovascularization in diabetic mice with CLI. This increase was associated with an upregulation of proangiogenic and proarteriogenic factors and was blunted by concomitant silencing of HIF-1α. In conclusion, silencing of PHD2, by the transient upregulation of HIF-1α and its target gene VEGF-A, might improve the efficiency of hBM-MSC-based therapies.


Assuntos
Transplante de Células/métodos , Membro Posterior/irrigação sanguínea , Prolina Dioxigenases do Fator Induzível por Hipóxia/antagonistas & inibidores , Isquemia/terapia , Células-Tronco Mesenquimais/citologia , Inibidores de Prolil-Hidrolase/uso terapêutico , Idoso , Animais , Apoptose/fisiologia , Estudos de Casos e Controles , Modelos Animais de Doenças , Procedimentos Endovasculares/métodos , Humanos , Isquemia/enzimologia , Salvamento de Membro/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Pessoa de Meia-Idade , Transfecção
4.
Stem Cells ; 32(11): 2908-22, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25069679

RESUMO

Published clinical trials in patients with ischemic diseases show limited benefit of adult stem cell-based therapy, likely due to their restricted plasticity and commitment toward vascular cell lineage. We aim to uncover the potent regenerative ability of MesP1/stage-specific embryonic antigen 1 (SSEA-1)-expressing cardiovascular progenitors enriched from human embryonic stem cells (hESCs). Injection of only 10(4) hESC-derived SSEA-1(+) /MesP1(+) cells, or their progeny obtained after treatment with VEGF-A or PDGF-BB, was effective enough to enhance postischemic revascularization in immunodeficient mice with critical limb ischemia (CLI). However, the rate of incorporation of hESC-derived SSEA-1(+) /MesP1(+) cells and their derivatives in ischemic tissues was modest. Alternatively, these cells possessed a unique miR-21 signature that inhibited phosphotase and tensin homolog (PTEN) thereby activating HIF-1α and the systemic release of VEGF-A. Targeting miR-21 limited cell survival and inhibited their proangiogenic capacities both in the Matrigel model and in mice with CLI. We next assessed the impact of mR-21 in adult angiogenesis-promoting cells. We observed an impaired postischemic angiogenesis in miR-21-deficient mice. Notably, miR-21 was highly expressed in circulating and infiltrated monocytes where it targeted PTEN/HIF-1α/VEGF-A signaling and cell survival. As a result, miR-21-deficient mice displayed an impaired number of infiltrated monocytes and a defective angiogenic phenotype that could be partially restored by retransplantation of bone marrow-derived cells from wild-type littermates. hESC-derived SSEA-1(+) /MesP1(+) cells progenitor cells are powerful key integrators of therapeutic angiogenesis in ischemic milieu and miR-21 is instrumental in this process as well as in the orchestration of the biological activity of adult angiogenesis-promoting cells.


Assuntos
Isquemia/terapia , MicroRNAs/metabolismo , Miocárdio/metabolismo , Transplante de Células-Tronco , Células-Tronco/metabolismo , Animais , Linhagem da Célula , Sobrevivência Celular/fisiologia , Membro Posterior/irrigação sanguínea , Humanos , Camundongos , Neovascularização Fisiológica/genética , Transdução de Sinais/fisiologia , Transplante de Células-Tronco/métodos
5.
Cell Rep ; 41(8): 111698, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36417883

RESUMO

Therapies based on glucagon-like peptide-1 (GLP-1) long-acting analogs and insulin are often used in the treatment of metabolic diseases. Both insulin and GLP-1 receptors are expressed in metabolically relevant brain regions, suggesting a cooperative action. However, the mechanisms underlying the synergistic actions of insulin and GLP-1R agonists remain elusive. In this study, we show that insulin-induced hypoglycemia enhances GLP-1R agonists entry in hypothalamic and area, leading to enhanced whole-body fat oxidation. Mechanistically, this phenomenon relies on the release of tanycyctic vascular endothelial growth factor A, which is selectively impaired after calorie-rich diet exposure. In humans, low blood glucose also correlates with enhanced blood-to-brain passage of insulin, suggesting that blood glucose gates the passage other energy-related signals in the brain. This study implies that the preventing hyperglycemia is important to harnessing the full benefit of GLP-1R agonist entry in the brain and action onto lipid mobilization and body weight loss.


Assuntos
Glicemia , Fator A de Crescimento do Endotélio Vascular , Humanos , Glicemia/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Insulina/metabolismo , Homeostase , Encéfalo/metabolismo
6.
Cell Tissue Res ; 335(1): 165-89, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18941783

RESUMO

Endothelial dysfunction comprises a number of functional alterations in the vascular endothelium that are associated with diabetes and cardiovascular disease, including changes in vasoregulation, enhanced generation of reactive oxygen intermediates, inflammatory activation, and altered barrier function. Hyperglycemia is a characteristic feature of type 1 and type 2 diabetes and plays a pivotal role in diabetes-associated microvascular complications. Although hyperglycemia also contributes to the occurrence and progression of macrovascular disease (the major cause of death in type 2 diabetes), other factors such as dyslipidemia, hyperinsulinemia, and adipose-tissue-derived factors play a more dominant role. A mutual interaction between these factors and endothelial dysfunction occurs during the progression of the disease. We pay special attention to the possible involvement of endoplasmic reticulum stress (ER stress) and the role of obesity and adipose-derived adipokines as contributors to endothelial dysfunction in type 2 diabetes. The close interaction of adipocytes of perivascular adipose tissue with arteries and arterioles facilitates the exposure of their endothelial cells to adipokines, particularly if inflammation activates the adipose tissue and thus affects vasoregulation and capillary recruitment in skeletal muscle. Hence, an initial dysfunction of endothelial cells underlies metabolic and vascular alterations that contribute to the development of type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Endotélio Vascular/metabolismo , Hemodinâmica , Hiperglicemia/metabolismo , Insulina/metabolismo , Obesidade/metabolismo , Transdução de Sinais , Adipocinas/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Animais , Arteríolas/metabolismo , Arteríolas/patologia , Capilares/metabolismo , Capilares/patologia , Diabetes Mellitus Tipo 2/mortalidade , Diabetes Mellitus Tipo 2/patologia , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/patologia , Endotélio Vascular/patologia , Humanos , Hiperglicemia/mortalidade , Hiperglicemia/patologia , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Obesidade/mortalidade , Obesidade/patologia , Estresse Fisiológico
7.
Front Physiol ; 9: 245, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29628894

RESUMO

Introduction: Insulin signaling in adipose tissue has been shown to regulate insulin's effects in muscle. In muscle, perivascular adipose tissue (PVAT) and vascular insulin signaling regulate muscle perfusion. Insulin receptor substrate (IRS) 2 has been shown to control adipose tissue function and glucose metabolism, and here we tested the hypothesis that IRS2 mediates insulin's actions on the vessel wall as well as the vasoactive properties of PVAT. Methods: We studied PVAT and muscle resistance arteries (RA) from littermate IRS2+/+ and IRS2-/- mice and vasoreactivity by pressure myography, vascular insulin signaling, adipokine expression, and release and PVAT morphology. As insulin induced constriction of IRS2+/+ RA in our mouse model, we also exposed RA's of C57/Bl6 mice to PVAT from IRS2+/+ and IRS2-/- littermates to evaluate vasodilator properties of PVAT. Results: IRS2-/- RA exhibited normal vasomotor function, yet a decreased maximal diameter compared to IRS2+/+ RA. IRS2+/+ vessels unexpectedly constricted endothelin-dependently in response to insulin, and this effect was absent in IRS2-/- RA due to reduced ERK1/2activation. For evaluation of PVAT function, we also used C57/Bl6 vessels with a neutral basal effect of insulin. In these experiments insulin (10.0 nM) increased diameter in the presence of IRS2+/+ PVAT (17 ± 4.8, p = 0.014), yet induced a 10 ± 7.6% decrease in diameter in the presence of IRS2-/- PVAT. Adipocytes in IRS2-/- PVAT (1314 ± 161 µm2) were larger (p = 0.0013) than of IRS2+/+ PVAT (915 ± 63 µm2). Adiponectin, IL-6, PAI-1 secretion were similar between IRS2+/+ and IRS2-/- PVAT, as were expression of pro-inflammatory genes (TNF-α, CCL2) and adipokines (adiponectin, leptin, endothelin-1). Insulin-induced AKT phosphorylation in RA was similar in the presence of IRS2-/- and IRS2+/+ PVAT. Conclusion: In muscle, IRS2 regulates both insulin's vasoconstrictor effects, mediating ERK1/2-ET-1 activation, and its vasodilator effects, by mediating the vasodilator effect of PVAT. The regulatory role of IRS2 in PVAT is independent from adiponectin secretion.

8.
PLoS One ; 12(12): e0189805, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29253907

RESUMO

AIMS: Hereditary Hemorrhagic Telangiectasia type-1 (HHT1) is a genetic vascular disorder caused by haploinsufficiency of the TGFß co-receptor endoglin. Dysfunctional homing of HHT1 mononuclear cells (MNCs) towards the infarcted myocardium hampers cardiac recovery. HHT1-MNCs have elevated expression of dipeptidyl peptidase-4 (DPP4/CD26), which inhibits recruitment of CXCR4-expressing MNCs by inactivation of stromal cell-derived factor 1 (SDF1). We hypothesize that inhibiting DPP4 will restore homing of HHT1-MNCs to the infarcted heart and improve cardiac recovery. METHODS AND RESULTS: After inducing myocardial infarction (MI), wild type (WT) and endoglin heterozygous (Eng+/-) mice were treated for 5 days with the DPP4 inhibitor Diprotin A (DipA). DipA increased the number of CXCR4+ MNCs residing in the infarcted Eng+/- hearts (Eng+/- 73.17±12.67 vs. Eng+/- treated 157.00±11.61, P = 0.0003) and significantly reduced infarct size (Eng+/- 46.60±9.33% vs. Eng+/- treated 27.02±3.04%, P = 0.03). Echocardiography demonstrated that DipA treatment slightly deteriorated heart function in Eng+/- mice. An increased number of capillaries (Eng+/- 61.63±1.43 vs. Eng+/- treated 74.30±1.74, P = 0.001) were detected in the infarct border zone whereas the number of arteries was reduced (Eng+/- 11.88±0.63 vs. Eng+/- treated 6.38±0.97, P = 0.003). Interestingly, while less M2 regenerative macrophages were present in Eng+/- hearts prior to DipA treatment, (WT 29.88±1.52% vs. Eng+/- 12.34±1.64%, P<0.0001), DPP4 inhibition restored the number of M2 macrophages to wild type levels. CONCLUSIONS: In this study, we demonstrate that systemic DPP4 inhibition restores the impaired MNC homing in Eng+/- animals post-MI, and enhances cardiac repair, which might be explained by restoring the balance between the inflammatory and regenerative macrophages present in the heart.


Assuntos
Dipeptidil Peptidase 4/química , Inibidores da Dipeptidil Peptidase IV/química , Macrófagos/metabolismo , Infarto do Miocárdio/metabolismo , Telangiectasia Hemorrágica Hereditária/genética , Animais , Quimiocina CXCL12/metabolismo , Modelos Animais de Doenças , Endoglina/metabolismo , Fibrose/metabolismo , Haploinsuficiência , Ventrículos do Coração/patologia , Heterozigoto , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Infarto do Miocárdio/complicações , Miocárdio/metabolismo , Miocárdio/patologia , Regeneração , Telangiectasia Hemorrágica Hereditária/patologia , Fator de Crescimento Transformador beta/metabolismo
9.
Front Genet ; 6: 114, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25852751

RESUMO

Hereditary hemorrhagic telangiectasia (HHT) or Rendu-Osler-Weber disease is a rare genetic vascular disorder known for its endothelial dysplasia causing arteriovenous malformations and severe bleedings. HHT-1 and HHT-2 are the most prevalent variants and are caused by heterozygous mutations in endoglin and activin receptor-like kinase 1, respectively. An undervalued aspect of the disease is that HHT patients experience persistent inflammation. Although endothelial and mural cells have been the main research focus trying to unravel the mechanism behind the disease, wound healing is a process with a delicate balance between inflammatory and vascular cells. Inflammatory cells are part of the mononuclear cells (MNCs) fraction, and can, next to eliciting an immune response, also have angiogenic potential. This biphasic effect of MNC can hold a promising mechanism to further elucidate treatment strategies for HHT patients. Before MNC are able to contribute to repair, they need to home to and retain in ischemic and damaged tissue. Directed migration (homing) of MNCs following tissue damage is regulated by the stromal cell derived factor 1 (SDF1). MNCs that express the C-X-C chemokine receptor 4 (CXCR4) migrate toward the tightly regulated gradient of SDF1. This directed migration of monocytes and lymphocytes can be inhibited by dipeptidyl peptidase 4 (DPP4). Interestingly, MNC of HHT patients express elevated levels of DPP4 and show impaired homing toward damaged tissue. Impaired homing capacity of the MNCs might therefore contribute to the impaired angiogenesis and tissue repair observed in HHT patients. This review summarizes recent studies regarding the role of MNCs in the etiology of HHT and vascular repair, and evaluates the efficacy of DPP4 inhibition in tissue integrity and repair.

10.
Diabetes ; 62(2): 590-8, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23048187

RESUMO

Microvascular recruitment in muscle is a determinant of insulin sensitivity. Whether perivascular adipose tissue (PVAT) is involved in disturbed insulin-induced vasoreactivity is unknown, as are the underlying mechanisms. This study investigates whether PVAT regulates insulin-induced vasodilation in muscle, the underlying mechanisms, and how obesity disturbs this vasodilation. Insulin-induced vasoreactivity of resistance arteries was studied with PVAT from C57BL/6 or db/db mice. PVAT weight in muscle was higher in db/db mice compared with C57BL/6 mice. PVAT from C57BL/6 mice uncovered insulin-induced vasodilation; this vasodilation was abrogated with PVAT from db/db mice. Blocking adiponectin abolished the vasodilator effect of insulin in the presence of C57BL/6 PVAT, and adiponectin secretion was lower in db/db PVAT. To investigate this interaction further, resistance arteries of AMPKα2(+/+) and AMPKα2(-/-) were studied. In AMPKα2(-/-) resistance arteries, insulin caused vasoconstriction in the presence of PVAT, and AMPKα2(+/+) resistance arteries showed a neutral response. On the other hand, inhibition of the inflammatory kinase Jun NH(2)-terminal kinase (JNK) in db/db PVAT restored insulin-induced vasodilation in an adiponectin-dependent manner. In conclusion, PVAT controls insulin-induced vasoreactivity in the muscle microcirculation through secretion of adiponectin and subsequent AMPKα2 signaling. PVAT from obese mice inhibits insulin-induced vasodilation, which can be restored by inhibition of JNK.


Assuntos
Tecido Adiposo/fisiologia , Insulina/fisiologia , Músculo Esquelético/irrigação sanguínea , Obesidade/fisiopatologia , Vasodilatação , Proteínas Quinases Ativadas por AMP/fisiologia , Adiponectina/antagonistas & inibidores , Adiponectina/metabolismo , Tecido Adiposo/irrigação sanguínea , Animais , Insulina/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Músculo Esquelético/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Peptídeos/farmacologia , Receptores de Adiponectina/administração & dosagem , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA