Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anticancer Agents Med Chem ; 13(10): 1469-76, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23387970

RESUMO

The concept of Ayurvedic expert guided drug discovery and development is defined and put to test systematically for the first time in literature. Western Science has explored only ~5% of the approximately 25,000 species of higher plants for drug leads. The ancient medical science of Ayurveda has however employed a much larger spectrum of plants for clinical treatment. Clerodendrum viscosum (CV), a commonly growing weed in the Indian subcontinent has been employed by S. Nirmalananda (Ayurvedic expert) for the treatment of cervical cancer. Here we isolate and characterize a water extract fraction (Cv-AP) from the root of CV and evaluate its anticervical cancer cell bioactivity. Our results indicate that Cv-AP possesses pro-apoptotic, anti-proliferative, and anti-migratory activity in a dose-dependent fashion against cervical cancer cell lines. In contrast, primary fibroblasts (control healthy cells), when exposed to similar concentrations of this extract, fail to undergo apoptosis and remain relatively unaffected. These findings suggest that Clerodendrum viscosum (CV) is a readily available source of components with potent anti-cancer activity and selective bioactivity against cervical cancer cells. The major component in CV-AP was identified as a glycoprotein via SDS Page and Concanavalin-A binding studies. This study serves to illustrate that systematic collaboration with Ayurveda is a practical and powerful strategy in drug discovery and development.


Assuntos
Antineoplásicos Fitogênicos/isolamento & purificação , Clerodendrum/química , Glicoproteínas/isolamento & purificação , Extratos Vegetais/farmacologia , Proteínas de Plantas/isolamento & purificação , Plantas Medicinais/química , Antineoplásicos Fitogênicos/química , Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Concanavalina A/química , Relação Dose-Resposta a Droga , Descoberta de Drogas , Feminino , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Glicoproteínas/química , Células HeLa , Humanos , Ayurveda , Especificidade de Órgãos , Extratos Vegetais/química , Proteínas de Plantas/química , Raízes de Plantas/química , Cultura Primária de Células , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/patologia
2.
Biochemistry ; 41(52): 15676-84, 2002 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-12501196

RESUMO

Backbone amide hydrogen bonds play a central role in protein secondary and tertiary structure. Previous studies have shown that substitution of a backbone ester (-COO-) in place of a backbone amide (-CONH-) can selectively destabilize backbone hydrogen bonds in a protein while maintaining a similar conformation to the native backbone structure. The majority of these studies have focused on backbone substitutions that were accessible to solvent. The GCN4 coiled coil domain is an example of a stable alpha-helical dimer that possesses a well-packed hydrophobic core. Amino acids in the a and d positions of the GCN4 helix, which pack the hydrophobic core, were replaced with the corresponding alpha-hydroxy acids in the context of a chemoselectively ligated heterodimer. While the overall structure and oligomerization state of the heterodimer were maintained, the overall destabilization of the ester analogues was greater (average DeltaDeltaG of 3+ kcal mol(-1)) and more variable than previous studies. Since burial of the more hydrophobic ester should stabilize the backbone and reduce the DeltaDeltaG, the increased destabilization must come from another source. However, the observed destabilization is correlated with the protection factors for individual amide hydrogens from previous hydrogen exchange experiments. Therefore, our results suggest that backbone engineering through ester substitution is a useful approach for probing the relative strength of backbone hydrogen bonds.


Assuntos
Proteínas de Ligação a DNA/química , Interações Hidrofóbicas e Hidrofílicas , Proteínas Quinases/química , Proteínas de Saccharomyces cerevisiae/química , Naftalenossulfonato de Anilina/química , Sítios de Ligação , Dicroísmo Circular , Proteínas de Ligação a DNA/síntese química , Proteínas de Ligação a DNA/isolamento & purificação , Dimerização , Corantes Fluorescentes/química , Guanidina/química , Temperatura Alta , Ligação de Hidrogênio , Ligantes , Biossíntese Peptídica , Conformação Proteica , Desnaturação Proteica , Dobramento de Proteína , Proteínas Quinases/síntese química , Proteínas Quinases/isolamento & purificação , Proteínas de Saccharomyces cerevisiae/síntese química , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Sulfetos/química , Termodinâmica , Ultracentrifugação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA