Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Environ Syst Decis ; 42(3): 372-387, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36035978

RESUMO

In the study, a multi-purpose reverse logistics network has been designed to create effectual management of medical waste (MW) generated in 39 districts of Istanbul, a heavily populated city, during the COVID-19 pandemic as well as that to be generated in the next decade. With the model, the medical waste management system in Istanbul is analyzed during the pandemic and for the next 10 years. The model attempts to integrate economic, environmental, and social objectives within the sustainable development goals. It aims to maximize the number of personnel and government earnings for the estimated MW of a megacity while minimizing the total fixed cost and the cost of carbon emissions and transportation. The results indicated that the existing facilities are sufficient for the treatment and disposal of MW generated even under pandemic conditions. However, the capacity of the sterilization facility could be insufficient to treat the estimated amount of MW in the next decade. Opening a sterilization facility near the sanitary landfill in Komurcuoda with a total management cost of 62,450,332 €/year would be an optimum solution for Istanbul MW. In comparison to the single-purpose model results, the multi-purpose model resulted in approximately 42,000 € more in total cost. Sensitivity analyses show that the amount of MW has the most significant effect on the total cost. This simple model created an effective MW management proposal for Istanbul, which can be a model for megacities. Supplementary Information: The online version contains supplementary material available at 10.1007/s10669-022-09873-z.

2.
Bioresour Technol ; 363: 127990, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36130686

RESUMO

The removal of Diethyl hexyl phthalate (DEHP) and Dibutyl phthalate (DBP) is of great importance due to their potential adverse effects on the environment and human health. In this study, two bionanocomposites prepared by immobilization of Bacillus subtilis esterase by crosslinking to halloysite and supported in chitosan and alginate beads were studied and proposed as a green approach. The esterase immobilization was confirmed by physical-chemical characterization. Bionanocomposite using chitosan showed the best degradation levels in batch tests attaining complete degradation of DBP and around 90% of DEHP. To determine the operational stability and efficiency of the system, two fixed bed reactors filled with both bionanocomposites were carried out operating in continuous mode. Chitosan based bionanocomposite showed the best performance being able to completely remove DBP and more than 85% of DEHP at the different flowrates. These results proved the potential of these synthesized bionanocomposites to effectively remove Phthalic Acid Esters.


Assuntos
Quitosana , Dietilexilftalato , Ácidos Ftálicos , Humanos , Alginatos , Argila , Dibutilftalato/metabolismo , Esterases , Ésteres/química , Ácidos Ftálicos/metabolismo
3.
Sci Total Environ ; 729: 138798, 2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32361436

RESUMO

Due to diversity of contaminants indoors and complexity in the physical structure of particulate matter, partition process of chemicals affects indoor concentration distribution. Synthetic Musk Compounds (SMCs) are ubiquitously found in household and personal care products, thus, in the environment. Exposure to SMCs is important for human health, therefore, their partitioning in indoor environmental media is a key issue. In this study, gas - particle, house dust, and window film partitioning of SMCs were investigated in an indoor micro-environment. In a sealed and unoccupied room, a polycyclic and nitro musk mixture was left for volatilization for an hour. Then, samples were collected using XAD-2 sandwiched between two PUF plugs, glass-fiber filter, and wipes for gas, PM10, window-film, house dust phases, respectively, for 145 h. Collected samples were analyzed using a GC-MS. Results demonstrated that SMC concentrations decreased over time, non-linearly. Six of the SMCs partitioned to PM10 with at least 10% at beginning of the experiment, whereas the number of compounds dropped to two at the end, showing that SMCs may partition well between the two phases but they tend to be in the gas phase. They were also detected in the film and dust phases but a decrease pattern similar to gas-particle was not observed. Spearman correlations indicate that the dust and film-associated concentrations were governed by similar processes but PM-associated concentrations were not. SMCs may be found in all phases, mainly in house dust in terms of mass among the studied media and unaccounted surface reservoirs. Therefore, their partitioning between indoor media has key implications for human exposure.

4.
Sci Total Environ ; 683: 411-426, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31141744

RESUMO

Feasible reclamation of industrial wastewaters by consuming less resource and time requires researchers to develop advanced and sophisticated solutions to meet today's versatile needs. In this respect, novel technological applications of hybrid membrane oxidation reactor (MOR) comprising of the Fenton or photo-Fenton enhanced ultrafiltration (FEUF and pFEUF), was demonstrated for treating textile washing wastewater. Their comparative hybrid performances were explored based on response surface analyses of Taguchi experimental designs that were optimized for maximized responses at minimum oxidant and acid consumptions. From eleven specific variables, those affecting the hybrid treatment performances at significant levels were found as H2O2 amount, process time, membrane type, Fe2+ concentration and temperature. The pFEUF treatment showed better and faster organics removal efficiency than by FEUF, and the UF process was seen to be more affected from changing operational conditions in pFEUF. Organic pollutants were oxidized by 56.6 ±â€¯8.7% degradation and 31.5 ±â€¯3.2% mineralization, while UF allowed a synergistic contribution to the hybrid MOR performance by 38.1 ±â€¯4.7% and 17.3 ±â€¯3.1%, respectively. Compared to simultaneous MOR and external UF after Fenton, sequential MOR was found as the best solution by an efficiency of 84.5% COD, 70.5% TOC, and 155.6 L/m2·h. The effluents could be readily produced with quality suitable for directly discharging to the sewage infrastructure system resulting in a complete treatment. This study proved that the developed MOR techniques are technologically favorable for the treatment of industrial organic wastewaters due to high treatment performances and less resource, time and land needs. It can be finally declared that they can be used as rather attractive solutions for not only wastewater reclamation but also water recovery by further handling of their effluents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA