Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 11(5)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35625283

RESUMO

Antimicrobial susceptibility testing is necessary to carry out antimicrobial stewardship but a limited number of drugs belonging to each antimicrobial family has to be tested for technical limitations and economic resources. In this study, we have determined the minimal inhibitory concentration, using microdilution following international standards (CLSI), for 490 Actinobacillus pleuropneumoniae, 285 Pasteurella multocida, 73 Bordetella bronchiseptica, 398 Streptococcus suis and 1571 Escherichia coli strains from clinical cases collected in Spain between 2018 and 2020. The antimicrobial susceptibility pattern was deciphered using a principal component analysis for each bacterium and a matrix correlation (high > 0.8, medium 0.5−0.8 and low < 0.5) was obtained for each pair of antimicrobials. No significant associations were observed between MIC patterns for different antimicrobial families, suggesting that co-selection mechanisms are not generally present in these porcine pathogens. However, a high correlation was observed between the fluroquinolones (marbofloxacin and enrofloxacin) for all mentioned pathogens and for ceftiofur and cefquinome for E. coli and S. suis. Moreover, a significant association was also observed for tetracyclines (doxycycline and oxytetracycline) and B. bronchiseptica and tildipirosin/tulathromycin for P. multocida. These results suggest that generally, a representative drug per antimicrobial class cannot be selected, however, for some drug−bug combinations, MIC values from one representative drug could be extrapolated to the whole antimicrobial family.

2.
Antibiotics (Basel) ; 9(11)2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33105780

RESUMO

The aim of this study was to set up antimicrobial stewardship for swine respiratory pathogens following the recommendation from the European Medicine Agency. The obtained antimicrobial susceptibility pattern recommended using antimicrobial stewardship for each clinical case instead of treatment guidelines focused on pathogens. Thus, the bacteria are isolated and the MIC values, the clinical interpretation for each antimicrobial (susceptible or resistant), additional information about the distance between the MIC obtained and the clinical breakpoint, and set up for each drug, are represented in the report provided for veterinarians. A graph from green (susceptible) to red (resistant) is enclosed for each antimicrobial and microorganism in the report. The greener, the more susceptible is the strain, and the redder, the less susceptible is the strain for each particular antimicrobial. This information could help veterinarians to select the most suitable antimicrobial from first, second, or last option antimicrobials. Thus, veterinarians should choose the antimicrobial, inside each option, with the best antimicrobial susceptibility pattern that corresponds with the greener status in the report. The information provided in the report could be useful for all clinical cases, caused by a certain bacterium within the same pig production system, if an epidemiological link could be established.

3.
Antibiotics (Basel) ; 9(7)2020 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-32664493

RESUMO

The monitoring of antimicrobial susceptibility of pig pathogens is critical to optimize antimicrobial treatments and prevent development of resistance with a one-health approach. The aim of this study was to investigate the antimicrobial susceptibility patterns of swine respiratory pathogens in Spain from 2017 to 2019. Bacterial isolation and identification were carried out following standardized methods from samples coming from sacrificed or recently deceased pigs with acute clinical signs compatible with respiratory tract infections. Minimum inhibitory concentration (MIC) values were determined using the broth microdilution method containing a total of 10 and 7-8 antimicrobials/concentrations respectively, in accordance with the recommendations presented by the Clinical and Laboratory Standards Institute (CLSI). The obtained antimicrobial susceptibility varies between pig respiratory pathogens. Actinobacillus pleuropneumoniae (APP) and Pasteurella multocida (PM) were highly susceptible (≥90%) to ceftiofur, florfenicol and macrolides (tilmicosin, tildipirosin and tulathromycin). However, the antimicrobial susceptibility was intermediate (>60% but <90%) for amoxicillin and enrofloxacin in the case of APP and sulfamethoxazole/trimethropim and tiamulin in the case of PM. Both bacteria showed low (<60%) antimicrobial susceptibility to doxycycline. Finally, Bordetella bronchiseptica was highly susceptible only to tildipirosin and tulathromycin (100%) and its susceptibility for florfenicol was close to 50% and <30% for the rest of the antimicrobial families tested. These results emphasize the need of determining antimicrobial susceptibility in pig respiratory cases in order to optimize the antimicrobial treatment in a case-by-case scenario.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA