Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Cell Dev Biol ; 35: 85-109, 2019 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-31590585

RESUMO

Phospholipids are synthesized primarily within the endoplasmic reticulum and are subsequently distributed to various subcellular membranes to maintain the unique lipid composition of specific organelles. As a result, in most cases, the steady-state localization of membrane phospholipids does not match their site of synthesis. This raises the question of how diverse lipid species reach their final membrane destinations and what molecular processes provide the energy to maintain the lipid gradients that exist between various membrane compartments. Recent studies have highlighted the role of inositol phospholipids in the nonvesicular transport of lipids at membrane contact sites. This review attempts to summarize our current understanding of these complex lipid dynamics and highlights their implications for defining future research directions.


Assuntos
Transporte Biológico , Retículo Endoplasmático/metabolismo , Metabolismo dos Lipídeos , Animais , Humanos , Lipídeos/biossíntese , Lipídeos/química , Organelas/química , Organelas/metabolismo
2.
Nat Rev Mol Cell Biol ; 21(1): 7-24, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31732717

RESUMO

Organelles compartmentalize eukaryotic cells, enhancing their ability to respond to environmental and developmental changes. One way in which organelles communicate and integrate their activities is by forming close contacts, often called 'membrane contact sites' (MCSs). Interest in MCSs has grown dramatically in the past decade as it is has become clear that they are ubiquitous and have a much broader range of critical roles in cells than was initially thought. Indeed, functions for MCSs in intracellular signalling (particularly calcium signalling, reactive oxygen species signalling and lipid signalling), autophagy, lipid metabolism, membrane dynamics, cellular stress responses and organelle trafficking and biogenesis have now been reported.


Assuntos
Membrana Celular/metabolismo , Metabolismo dos Lipídeos , Transdução de Sinais , Estresse Fisiológico/fisiologia , Animais , Autofagossomos/metabolismo , Autofagia , Transporte Biológico , Sinalização do Cálcio , Membrana Celular/química , Retículo Endoplasmático/metabolismo , Enzimas/metabolismo , Células Eucarióticas/metabolismo , Humanos , Membranas Mitocondriais/metabolismo , Espécies Reativas de Oxigênio/metabolismo
3.
EMBO J ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918635

RESUMO

Phosphatidylserine (PS) is an important anionic phospholipid that is synthesized within the endoplasmic reticulum (ER). While PS shows the highest enrichment and serves important functional roles in the plasma membrane (PM) but its role in the nucleus is poorly explored. Using three orthogonal approaches, we found that PS is also uniquely enriched in the inner nuclear membrane (INM) and the nuclear reticulum (NR). Nuclear PS is critical for supporting the translocation of CCTα and Lipin1α, two key enzymes important for phosphatidylcholine (PC) biosynthesis, from the nuclear matrix to the INM and NR in response to oleic acid treatment. We identified the PS-interacting regions within the M-domain of CCTα and M-Lip domain of Lipin1α, and show that lipid droplet formation is altered by manipulations of nuclear PS availability. Our studies reveal an unrecognized regulatory role of nuclear PS levels in the regulation of key PC synthesizing enzymes within the nucleus.

4.
EMBO J ; 43(10): 2035-2061, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38627600

RESUMO

Phosphatidylinositol (PI) is the precursor lipid for the minor phosphoinositides (PPIns), which are critical for multiple functions in all eukaryotic cells. It is poorly understood how phosphatidylinositol, which is synthesized in the ER, reaches those membranes where PPIns are formed. Here, we used VT01454, a recently identified inhibitor of class I PI transfer proteins (PITPs), to unravel their roles in lipid metabolism, and solved the structure of inhibitor-bound PITPNA to gain insight into the mode of inhibition. We found that class I PITPs not only distribute PI for PPIns production in various organelles such as the plasma membrane (PM) and late endosomes/lysosomes, but that their inhibition also significantly reduced the levels of phosphatidylserine, di- and triacylglycerols, and other lipids, and caused prominent increases in phosphatidic acid. While VT01454 did not inhibit Golgi PI4P formation nor reduce resting PM PI(4,5)P2 levels, the recovery of the PM pool of PI(4,5)P2 after receptor-mediated hydrolysis required both class I and class II PITPs. Overall, these studies show that class I PITPs differentially regulate phosphoinositide pools and affect the overall cellular lipid landscape.


Assuntos
Fosfatidilinositóis , Proteínas de Transferência de Fosfolipídeos , Humanos , Fosfatidilinositóis/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Proteínas de Transferência de Fosfolipídeos/genética , Metabolismo dos Lipídeos , Membrana Celular/metabolismo , Células HeLa , Organelas/metabolismo , Endossomos/metabolismo , Animais
5.
Cell ; 141(5): 799-811, 2010 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-20510927

RESUMO

Many RNA viruses remodel intracellular membranes to generate specialized sites for RNA replication. How membranes are remodeled and what properties make them conducive for replication are unknown. Here we show how RNA viruses can manipulate multiple components of the cellular secretory pathway to generate organelles specialized for replication that are distinct in protein and lipid composition from the host cell. Specific viral proteins modulate effector recruitment by Arf1 GTPase and its guanine nucleotide exchange factor GBF1, promoting preferential recruitment of phosphatidylinositol-4-kinase IIIbeta (PI4KIIIbeta) to membranes over coat proteins, yielding uncoated phosphatidylinositol-4-phosphate (PI4P) lipid-enriched organelles. The PI4P-rich lipid microenvironment is essential for both enteroviral and flaviviral RNA replication; PI4KIIIbeta inhibition interferes with this process; and enteroviral RNA polymerases specifically bind PI4P. These findings reveal how RNA viruses can selectively exploit specific elements of the host to form specialized organelles where cellular phosphoinositide lipids are key to regulating viral RNA replication.


Assuntos
Enterovirus/metabolismo , Flavivirus/metabolismo , RNA Viral/metabolismo , Via Secretória , Replicação Viral , Retículo Endoplasmático/metabolismo , Células HeLa , Humanos , Fosfatos de Fosfatidilinositol/metabolismo
6.
EMBO Rep ; 23(7): e54532, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35712788

RESUMO

Phosphoinositide lipids (PPIn) are enriched in stearic- and arachidonic acids (38:4) but how this enrichment is established and maintained during phospholipase C (PLC) activation is unknown. Here we show that the metabolic fate of newly synthesized phosphatidic acid (PA), the lipid precursor of phosphatidylinositol (PI), is influenced by the fatty acyl-CoA used with preferential routing of the arachidonoyl-enriched species toward PI synthesis. Furthermore, during agonist stimulation the unsaturated forms of PI(4,5P)2 are replenished significantly faster than the more saturated ones, suggesting a favored recycling of the unsaturated forms of the PLC-generated hydrolytic products. Cytidine diphosphate diacylglycerol synthase 2 (CDS2) but not CDS1 was found to contribute to increased PI resynthesis during PLC activation. Lastly, while the lipid transfer protein, Nir2 is found to contribute to rapid PPIn resynthesis during PLC activation, the faster re-synthesis of the 38:4 species does not depend on Nir2. Therefore, the fatty acid side-chain composition of the lipid precursors used for PI synthesis is an important determinant of their metabolic fates, which also contributes to the maintenance of the unique fatty acid profile of PPIn lipids.


Assuntos
Ácidos Graxos , Ácidos Fosfatídicos , Lipogênese , Ácidos Fosfatídicos/metabolismo , Fosfatidilinositóis/metabolismo , Transdução de Sinais
7.
EMBO J ; 38(8): e100312, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31368593

RESUMO

The small GTPase Rab7 is a key organizer of receptor sorting and lysosomal degradation by recruiting of a variety of effectors depending on its GDP/GTP-bound state. However, molecular mechanisms that trigger Rab7 inactivation remain elusive. Here we find that, among the endosomal pools, Rab7-positive compartments possess the highest level of PI4P, which is primarily produced by PI4K2A kinase. Acute conversion of this endosomal PI4P to PI(4,5)P2 causes Rab7 dissociation from late endosomes and releases a regulator of autophagosome-lysosome fusion, PLEKHM1, from the membrane. Rab7 effectors Vps35 and RILP are not affected by acute PI(4,5)P2 production. Deletion of PI4K2A greatly reduces PIP5Kγ-mediated PI(4,5)P2 production in Rab7-positive endosomes leading to impaired Rab7 inactivation and increased number of LC3-positive structures with defective autophagosome-lysosome fusion. These results reveal a late endosomal PI4P-PI(4,5)P2 -dependent regulatory loop that impacts autophagosome flux by affecting Rab7 cycling and PLEKHM1 association.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Autofagossomos/metabolismo , Endossomos/metabolismo , Lisossomos/metabolismo , Fusão de Membrana , Glicoproteínas de Membrana/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas Relacionadas à Autofagia , Endocitose , Células HEK293 , Humanos , Ligação Proteica , Transporte Proteico , proteínas de unión al GTP Rab7
8.
Adv Exp Med Biol ; 1422: 327-352, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36988887

RESUMO

Cholesterol (Chol) is an essential component of all eukaryotic cell membranes that affects the function of numerous peripheral as well as integral membrane proteins. Chol is synthesized in the ER, but it is selectively enriched within the plasma membrane (PM) and other endomembranes, which requires Chol to cross the aqueous phase of the cytoplasm. In addition to the classical vesicular trafficking pathways that are known to facilitate the bulk transport of membrane intermediates, Chol is also transported via non-vesicular lipid transfer proteins that work primarily within specialized membrane contact sites. Some of these transport pathways work against established concentration gradients and hence require energy. Recent studies highlight the unique role of phosphoinositides (PPIns), and phosphatidylinositol 4-phosphate (PI4P) in particular, for the control of non-vesicular Chol transport. In this chapter, we will review the emerging connection between Chol, PPIns, and lipid transfer proteins that include the important family of oxysterol-binding protein related proteins, or ORPs.


Assuntos
Colesterol , Fosfatos de Fosfatidilinositol , Fosforilação , Colesterol/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositóis/metabolismo , Transporte Biológico , Proteínas de Membrana/metabolismo , Membrana Celular/metabolismo
9.
Proc Natl Acad Sci U S A ; 117(45): 28251-28262, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33109721

RESUMO

Toll-like receptor (TLR) recruitment to phagosomes in dendritic cells (DCs) and downstream TLR signaling are essential to initiate antimicrobial immune responses. However, the mechanisms underlying TLR localization to phagosomes are poorly characterized. We show herein that phosphatidylinositol-4-kinase IIα (PI4KIIα) plays a key role in initiating phagosomal TLR4 responses in murine DCs by generating a phosphatidylinositol-4-phosphate (PtdIns4P) platform conducive to the binding of the TLR sorting adaptor Toll-IL1 receptor (TIR) domain-containing adaptor protein (TIRAP). PI4KIIα is recruited to maturing lipopolysaccharide (LPS)-containing phagosomes in an adaptor protein-3 (AP-3)-dependent manner, and both PI4KIIα and PtdIns4P are detected on phagosomal membrane tubules. Knockdown of PI4KIIα-but not the related PI4KIIß-impairs TIRAP and TLR4 localization to phagosomes, reduces proinflammatory cytokine secretion, abolishes phagosomal tubule formation, and impairs major histocompatibility complex II (MHC-II) presentation. Phagosomal TLR responses in PI4KIIα-deficient DCs are restored by reexpression of wild-type PI4KIIα, but not of variants lacking kinase activity or AP-3 binding. Our data indicate that PI4KIIα is an essential regulator of phagosomal TLR signaling in DCs by ensuring optimal TIRAP recruitment to phagosomes.


Assuntos
1-Fosfatidilinositol 4-Quinase/metabolismo , Células Dendríticas/imunologia , Complexo Principal de Histocompatibilidade/fisiologia , Fagossomos/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Células da Medula Óssea , Citocinas/metabolismo , Lipopolissacarídeos , Camundongos , Transdução de Sinais , Receptor 4 Toll-Like/genética , Receptores Toll-Like/metabolismo
10.
Proc Natl Acad Sci U S A ; 117(45): 28102-28113, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33106410

RESUMO

Better understanding myelination of peripheral nerves would benefit patients affected by peripheral neuropathies, including Charcot-Marie-Tooth disease. Little is known about the role the Golgi compartment plays in Schwann cell (SC) functions. Here, we studied the role of Golgi in myelination of peripheral nerves in mice through SC-specific genetic inactivation of phosphatidylinositol 4-kinase beta (PI4KB), a Golgi-associated lipid kinase. Sciatic nerves of such mice showed thinner myelin of large diameter axons and gross aberrations in myelin organization affecting the nodes of Ranvier, the Schmidt-Lanterman incisures, and Cajal bands. Nonmyelinating SCs showed a striking inability to engulf small diameter nerve fibers. SCs of mutant mice showed a distorted Golgi morphology and disappearance of OSBP at the cis-Golgi compartment, together with a complete loss of GOLPH3 from the entire Golgi. Accordingly, the cholesterol and sphingomyelin contents of sciatic nerves were greatly reduced and so was the number of caveolae observed in SCs. Although the conduction velocity of sciatic nerves of mutant mice showed an 80% decrease, the mice displayed only subtle impairment in their motor functions. Our analysis revealed that Golgi functions supported by PI4KB are critically important for proper myelination through control of lipid metabolism, protein glycosylation, and organization of microvilli in the nodes of Ranvier of peripheral nerves.


Assuntos
Complexo de Golgi/metabolismo , Antígenos de Histocompatibilidade Menor , Bainha de Mielina/metabolismo , Nervos Periféricos/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool) , Células de Schwann/metabolismo , Animais , Colesterol/metabolismo , Camundongos , Camundongos Knockout , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/metabolismo , Fosfatidilinositóis/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo
11.
Traffic ; 21(2): 200-219, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31650663

RESUMO

Among the structural phospholipids that form the bulk of eukaryotic cell membranes, phosphatidylinositol (PtdIns) is unique in that it also serves as the common precursor for low-abundance regulatory lipids, collectively referred to as polyphosphoinositides (PPIn). The metabolic turnover of PPIn species has received immense attention because of the essential functions of these lipids as universal regulators of membrane biology and their dysregulation in numerous human pathologies. The diverse functions of PPIn lipids occur, in part, by orchestrating the spatial organization and conformational dynamics of peripheral or integral membrane proteins within defined subcellular compartments. The emerging role of stable contact sites between adjacent membranes as specialized platforms for the coordinate control of ion exchange, cytoskeletal dynamics, and lipid transport has also revealed important new roles for PPIn species. In this review, we highlight the importance of membrane contact sites formed between the endoplasmic reticulum (ER) and plasma membrane (PM) for the integrated regulation of PPIn metabolism within the PM. Special emphasis will be placed on non-vesicular lipid transport during control of the PtdIns biosynthetic cycle as well as toward balancing the turnover of the signaling PPIn species that define PM identity.


Assuntos
Membrana Celular , Retículo Endoplasmático , Fosfatidilinositóis , Transporte Biológico , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositóis/metabolismo
12.
J Cell Sci ; 133(6)2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32041906

RESUMO

Oxysterol-binding protein (OSBP)-related proteins (ORPs) mediate non-vesicular lipid transfer between intracellular membranes. Phosphoinositide (PI) gradients play important roles in the ability of OSBP and some ORPs to transfer cholesterol and phosphatidylserine between the endoplasmic reticulum (ER) and other organelle membranes. Here, we show that plasma membrane (PM) association of ORP3 (also known as OSBPL3), a poorly characterized ORP family member, is triggered by protein kinase C (PKC) activation, especially when combined with Ca2+ increases, and is determined by both PI(4,5)P2 and PI4P After activation, ORP3 efficiently extracts PI4P and to a lesser extent phosphatidic acid from the PM, and slightly increases PM cholesterol levels. Full activation of ORP3 resulted in decreased PM PI4P levels and inhibited Ca2+ entry via the store-operated Ca2+ entry pathway. The C-terminal region of ORP3 that follows the strictly defined lipid transfer domain was found to be critical for the proper localization and function of the protein.


Assuntos
Retículo Endoplasmático , Oxirredutases , Fosfatos de Fosfatidilinositol , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosforilação
13.
Am J Med Genet A ; 188(6): 1739-1745, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35224839

RESUMO

Heterozygous de novo missense pathogenic variants in PTDSS1 that result in gain-of-function of phosphatidylserine synthase 1 are associated with Lenz-Majewski hyperostotic dwarfism (LMHD). We identified the novel heterozygous de novo variant p.(Leu137Phe) in PTDSS1 in a child with mild-to-moderate developmental delay. Skeletal survey revealed no evidence of LMHD in this patient. Functional assessment of the p.Leu137Phe variant was performed by overexpressing the mutant protein into HEK293 cells. Following C14 -serine labeling and TLC analysis of lipids, we observed that the p.(Leu137Phe) variant displayed no catalytic activity compared to the wild-type enzyme. We conclude that p.(Leu137Phe) variant has decreased enzymatic activity and that is likely to be the etiology of the patient's symptoms given the gene's constraint in the population. This is the first report of the clinical phenotype seen in an individual with a heterozygous loss-of-function variant in PTDSS1. This phenotype is distinct from LMHD, which results from gain-of-function pathogenic variants in the same gene. Evaluation of the neurodevelopmental phenotype of additional individuals with loss-of-function variants in PTDSS1 is indicated to determine the spectrum of associated phenotypes.


Assuntos
Anormalidades Múltiplas , Doenças do Desenvolvimento Ósseo , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Anormalidades Múltiplas/genética , Doenças do Desenvolvimento Ósseo/genética , Células HEK293 , Humanos , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Fenótipo
14.
EMBO Rep ; 21(2): e48441, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31829496

RESUMO

The lipid kinase PI4KB, which generates phosphatidylinositol 4-phosphate (PI4P), is a key enzyme in regulating membrane transport and is also hijacked by multiple picornaviruses to mediate viral replication. PI4KB can interact with multiple protein binding partners, which are differentially manipulated by picornaviruses to facilitate replication. The protein c10orf76 is a PI4KB-associated protein that increases PI4P levels at the Golgi and is essential for the viral replication of specific enteroviruses. We used hydrogen-deuterium exchange mass spectrometry to characterize the c10orf76-PI4KB complex and reveal that binding is mediated by the kinase linker of PI4KB, with formation of the heterodimeric complex modulated by PKA-dependent phosphorylation. Complex-disrupting mutations demonstrate that PI4KB is required for membrane recruitment of c10orf76 to the Golgi, and that an intact c10orf76-PI4KB complex is required for the replication of c10orf76-dependent enteroviruses. Intriguingly, c10orf76 also contributed to proper Arf1 activation at the Golgi, providing a putative mechanism for the c10orf76-dependent increase in PI4P levels at the Golgi.


Assuntos
Enterovirus , Animais , Enterovirus/genética , Enterovirus/metabolismo , Complexo de Golgi/metabolismo , Fosfatos de Fosfatidilinositol , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Ligação Proteica , Células Sf9 , Replicação Viral
15.
Brain ; 144(12): 3597-3610, 2021 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-34415310

RESUMO

Phosphatidylinositol 4-kinase IIIα (PI4KIIIα/PI4KA/OMIM:600286) is a lipid kinase generating phosphatidylinositol 4-phosphate (PI4P), a membrane phospholipid with critical roles in the physiology of multiple cell types. PI4KIIIα's role in PI4P generation requires its assembly into a heterotetrameric complex with EFR3, TTC7 and FAM126. Sequence alterations in two of these molecular partners, TTC7 (encoded by TTC7A or TCC7B) and FAM126, have been associated with a heterogeneous group of either neurological (FAM126A) or intestinal and immunological (TTC7A) conditions. Here we show that biallelic PI4KA sequence alterations in humans are associated with neurological disease, in particular hypomyelinating leukodystrophy. In addition, affected individuals may present with inflammatory bowel disease, multiple intestinal atresia and combined immunodeficiency. Our cellular, biochemical and structural modelling studies indicate that PI4KA-associated phenotypical outcomes probably stem from impairment of PI4KIIIα-TTC7-FAM126's organ-specific functions, due to defective catalytic activity or altered intra-complex functional interactions. Together, these data define PI4KA gene alteration as a cause of a variable phenotypical spectrum and provide fundamental new insight into the combinatorial biology of the PI4KIIIα-FAM126-TTC7-EFR3 molecular complex.


Assuntos
Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Atresia Intestinal/genética , Antígenos de Histocompatibilidade Menor/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Doenças da Imunodeficiência Primária/genética , Feminino , Humanos , Masculino , Linhagem , Polimorfismo de Nucleotídeo Único
16.
Physiol Rev ; 93(3): 1019-137, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23899561

RESUMO

Phosphoinositides (PIs) make up only a small fraction of cellular phospholipids, yet they control almost all aspects of a cell's life and death. These lipids gained tremendous research interest as plasma membrane signaling molecules when discovered in the 1970s and 1980s. Research in the last 15 years has added a wide range of biological processes regulated by PIs, turning these lipids into one of the most universal signaling entities in eukaryotic cells. PIs control organelle biology by regulating vesicular trafficking, but they also modulate lipid distribution and metabolism via their close relationship with lipid transfer proteins. PIs regulate ion channels, pumps, and transporters and control both endocytic and exocytic processes. The nuclear phosphoinositides have grown from being an epiphenomenon to a research area of its own. As expected from such pleiotropic regulators, derangements of phosphoinositide metabolism are responsible for a number of human diseases ranging from rare genetic disorders to the most common ones such as cancer, obesity, and diabetes. Moreover, it is increasingly evident that a number of infectious agents hijack the PI regulatory systems of host cells for their intracellular movements, replication, and assembly. As a result, PI converting enzymes began to be noticed by pharmaceutical companies as potential therapeutic targets. This review is an attempt to give an overview of this enormous research field focusing on major developments in diverse areas of basic science linked to cellular physiology and disease.


Assuntos
Fosfatidilinositóis/metabolismo , Animais , Comunicação Celular/fisiologia , Regulação da Expressão Gênica/fisiologia , Estrutura Molecular , Fosfatidilinositóis/química
17.
J Lipid Res ; 60(3): 683-693, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30626625

RESUMO

The minor phospholipid, phosphatidylinositol 4-phosphate (PI4P), is emerging as a key regulator of lipid transfer in ER-membrane contact sites. Four different phosphatidylinositol 4-kinase (PI4K) enzymes generate PI4P in different membrane compartments supporting distinct cellular processes, many of which are crucial for the maintenance of cellular integrity but also hijacked by intracellular pathogens. While type III PI4Ks have been targeted by small molecular inhibitors, thus helping decipher their importance in cellular physiology, no inhibitors are available for the type II PI4Ks, which hinders investigations into their cellular functions. Here, we describe the identification of small molecular inhibitors of PI4K type II alpha (PI4K2A) by implementing a large scale small molecule high-throughput screening. A novel assay was developed that allows testing of selected inhibitors against PI4K2A in intact cells using a bioluminescence resonance energy transfer approach adapted to plate readers. The compounds disclosed here will pave the way to the optimization of PI4K2A inhibitors that can be used in cellular and animal studies to better understand the role of this enzyme in both normal and pathological states.


Assuntos
1-Fosfatidilinositol 4-Quinase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Ensaios de Triagem em Larga Escala , 1-Fosfatidilinositol 4-Quinase/química , 1-Fosfatidilinositol 4-Quinase/metabolismo , Animais , Transporte Biológico , Células COS , Chlorocebus aethiops , Avaliação Pré-Clínica de Medicamentos , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Inibidores Enzimáticos/metabolismo , Complexo de Golgi/efeitos dos fármacos , Complexo de Golgi/metabolismo , Células HEK293 , Humanos , Simulação de Acoplamento Molecular , Conformação Proteica
18.
J Cell Sci ; 130(17): 2821-2832, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28724757

RESUMO

Decreased luminal endoplasmic reticulum (ER) Ca2+ concentration triggers oligomerization and clustering of the ER Ca2+ sensor STIM1 to promote its association with plasma membrane Orai1 Ca2+ channels leading to increased Ca2+ influx. A key step in STIM1 activation is the release of its SOAR domain from an intramolecular clamp formed with the STIM1 first coiled-coil (CC1) region. Using a truncated STIM1(1-343) molecule that captures or releases the isolated SOAR domain depending on luminal ER Ca2+ concentrations, we analyzed the early molecular events that control the intramolecular clamp formed between the CC1 and SOAR domains. We found that STIM1 forms constitutive dimers, and its CC1 domain can bind the SOAR domain of another STIM1 molecule in trans. Artificial oligomerization failed to liberate the SOAR domain or activate STIM1 unless the luminal Ca2+-sensing domains were removed. We propose that the release of SOAR from its CC1 interaction is controlled by changes in the orientation of the two CC1 domains in STIM1 dimers. Ca2+ unbinding in the STIM1 luminal domains initiates the conformational change allowing SOAR domain liberation and clustering, leading to Orai1 channel activation.


Assuntos
Multimerização Proteica , Molécula 1 de Interação Estromal/química , Molécula 1 de Interação Estromal/metabolismo , Animais , Células COS , Sobrevivência Celular , Chlorocebus aethiops , Imageamento Tridimensional , Mutação/genética , Conformação Proteica , Domínios Proteicos , Estabilidade Proteica , Molécula 1 de Interação Estromal/genética
19.
Adv Exp Med Biol ; 1111: 241, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31321752

RESUMO

This chapter was inadvertently published with an incorrect copyright holder. It has now been updated as below.

20.
Adv Exp Med Biol ; 1111: 77-137, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30483964

RESUMO

Within eukaryotic cells, biochemical reactions need to be organized on the surface of membrane compartments that use distinct lipid constituents to dynamically modulate the functions of integral proteins or influence the selective recruitment of peripheral membrane effectors. As a result of these complex interactions, a variety of human pathologies can be traced back to improper communication between proteins and membrane surfaces; either due to mutations that directly alter protein structure or as a result of changes in membrane lipid composition. Among the known structural lipids found in cellular membranes, phosphatidylinositol (PtdIns) is unique in that it also serves as the membrane-anchored precursor of low-abundance regulatory lipids, the polyphosphoinositides (PPIn), which have restricted distributions within specific subcellular compartments. The ability of PPIn lipids to function as signaling platforms relies on both non-specific electrostatic interactions and the selective stereospecific recognition of PPIn headgroups by specialized protein folds. In this chapter, we will attempt to summarize the structural diversity of modular PPIn-interacting domains that facilitate the reversible recruitment and conformational regulation of peripheral membrane proteins. Outside of protein folds capable of capturing PPIn headgroups at the membrane interface, recent studies detailing the selective binding and bilayer extraction of PPIn species by unique functional domains within specific families of lipid-transfer proteins will also be highlighted. Overall, this overview will help to outline the fundamental physiochemical mechanisms that facilitate localized interactions between PPIn lipids and the wide-variety of PPIn-binding proteins that are essential for the coordinate regulation of cellular metabolism and membrane dynamics.


Assuntos
Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Domínios Proteicos , Humanos , Fosfatidilinositóis/metabolismo , Ligação Proteica , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA