Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Biophys J ; 122(4): 632-645, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36654508

RESUMO

Most tumors have abnormal karyotypes, which arise from mistakes during mitotic division of healthy euploid cells and evolve through numerous complex mechanisms. In a recent mouse model with increased chromosome missegregation, chromosome gains dominate over losses both in pretumor and tumor tissues, whereas T-cell lymphomas are characterized by gains of chromosomes 14 and 15. However, the quantitative understanding of clonal selection leading to tumor karyotype evolution remains unknown. Here we show, by introducing a mathematical model based on a concept of a macro-karyotype, that tumor karyotypes can be explained by proliferation-driven evolution of aneuploid cells. In pretumor cells, increased apoptosis and slower proliferation of cells with monosomies lead to predominant chromosome gains over losses. Tumor karyotypes with gain of one chromosome can be explained by karyotype-dependent proliferation, whereas, for those with two chromosomes, an interplay with karyotype-dependent apoptosis is an additional possible pathway. Thus, evolution of tumor-specific karyotypes requires proliferative advantage of specific aneuploid karyotypes.


Assuntos
Aneuploidia , Neoplasias , Animais , Camundongos , Cariotipagem , Cariótipo , Neoplasias/genética
2.
BMC Biol ; 17(1): 42, 2019 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-31122217

RESUMO

BACKGROUND: At the beginning of mitosis, the cell forms a spindle made of microtubules and associated proteins to segregate chromosomes. An important part of spindle architecture is a set of antiparallel microtubule bundles connecting the spindle poles. A key question is how microtubules extending at arbitrary angles form an antiparallel interpolar bundle. RESULTS: Here, we show in fission yeast that microtubules meet at an oblique angle and subsequently rotate into antiparallel alignment. Our live-cell imaging approach provides a direct observation of interpolar bundle formation. By combining experiments with theory, we show that microtubules from each pole search for those from the opposite pole by performing random angular movement. Upon contact, two microtubules slide sideways along each other in a directed manner towards the antiparallel configuration. We introduce the contour length of microtubules as a measure of activity of motors that drive microtubule sliding, which we used together with observation of Cut7/kinesin-5 motors and our theory to reveal the minus-end-directed motility of this motor in vivo. CONCLUSION: Random rotational motion helps microtubules from the opposite poles to find each other and subsequent accumulation of motors allows them to generate forces that drive interpolar bundle formation.


Assuntos
Ciclo Celular , Microtúbulos/metabolismo , Mitose/fisiologia , Schizosaccharomyces/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA