Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Virol ; 95(23): e0117021, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34523960

RESUMO

Vif is a lentiviral accessory protein that counteracts the antiviral activity of cellular APOBEC3 (A3) cytidine deaminases in infected cells. The exact contribution of each member of the A3 family for the restriction of HIV-2 is still unclear. Thus, the aim of this work was to identify the A3s with anti-HIV-2 activity and compare their restriction potential for HIV-2 and HIV-1. We found that A3G is a strong restriction factor of both types of viruses and A3C restricts neither HIV-1 nor HIV-2. Importantly, A3B exhibited potent antiviral activity against HIV-2, but its effect was negligible against HIV-1. Whereas A3B is packaged with similar efficiency into both viruses in the absence of Vif, HIV-2 and HIV-1 differ in their sensitivity to A3B. HIV-2 Vif targets A3B by reducing its cellular levels and inhibiting its packaging into virions, whereas HIV-1 Vif did not evolve to antagonize A3B. Our observations support the hypothesis that during wild-type HIV-1 and HIV-2 infections, both viruses are able to replicate in host cells expressing A3B but using different mechanisms, probably resulting from a Vif functional adaptation over evolutionary time. Our findings provide new insights into the differences between Vif protein and their cellular partners in the two human viruses. Of note, A3B is highly expressed in some cancer cells and may cause deamination-induced mutations in these cancers. Thus, A3B may represent an important therapeutic target. As such, the ability of HIV-2 Vif to induce A3B degradation could be an effective tool for cancer therapy. IMPORTANCE Primate lentiviruses encode a series of accessory genes that facilitate virus adaptation to its host. Among those, the vif-encoded protein functions primarily by targeting the APOBEC3 (A3) family of cytidine deaminases. All lentiviral Vif proteins have the ability to antagonize A3G; however, antagonizing other members of the A3 family is variable. Here, we report that HIV-2 Vif, unlike HIV-1 Vif, can induce degradation of A3B. Consequently, HIV-2 Vif but not HIV-1 Vif can inhibit the packaging of A3B. Interestingly, while A3B is packaged efficiently into the core of both HIV-1 and HIV-2 virions in the absence of Vif, it only affects the infectivity of HIV-2 particles. Thus, HIV-1 and HIV-2 have evolved two distinct mechanisms to antagonize the antiviral activity of A3B. Aside from its antiviral activity, A3B has been associated with mutations in some cancers. Degradation of A3B by HIV-2 Vif may be useful for cancer therapies.


Assuntos
Citidina Desaminase/metabolismo , Produtos do Gene vif/metabolismo , HIV-1/metabolismo , HIV-2/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Produtos do Gene vif do Vírus da Imunodeficiência Humana/metabolismo , Animais , Citidina Desaminase/genética , Células HEK293 , Infecções por HIV , Humanos , Antígenos de Histocompatibilidade Menor/genética , Receptor EphB2
2.
J Prosthet Dent ; 125(4): 705.e1-705.e7, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33597080

RESUMO

STATEMENT OF PROBLEM: Dental cements that release monomers that negatively impact adjacent oral soft tissues may adversely affect clinical outcomes. However, in vitro studies evaluating the cytotoxic and genotoxic potential of substances released from dental cements are lacking. PURPOSE: The purpose of this in vitro study was to define and compare the cytotoxicity and genotoxicity of the eluates of a self-adhesive resin cement (RelyX Unicem 2 Automix) autopolymerized and light polymerized with 2 other types of luting cements: a glass ionomer cement (Ketac Cem Easymix) and a resin-modified glass ionomer cement (Ketac Cem Plus). MATERIAL AND METHODS: The eluates were prepared, and 3T3 mouse fibroblast cells were exposed for 24 hours to serial eluate dilutions of the 3 types of cement. Cytotoxicity was determined by using a cell viability assessment through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and crystal violet assays. Genotoxic effects were determined by using the cytokinesis-block micronucleus assay. RESULTS: Cell viability was higher in the presence of the glass ionomer cement eluate than of the resin-modified glass ionomer cement and resin cement eluates. A pronounced decrease in viability was found when the cells were exposed to undiluted samples of resin-modified glass ionomer cement (around 50%) or resin cement (around 80% to 90%). No significant difference in cell viability was found between autopolymerized and light-polymerized resin cements. All cements induced a dose-dependent response of mononucleated cell formation. However, only the resin cements showed double strand breaks significant differences in the deoxyribonucleic acid (DNA) molecules against the basal DNA lesions that occurred spontaneously. CONCLUSIONS: The glass ionomer cement was not found to be cytotoxic or genotoxic, whereas the eluates derived from the resin-modified glass ionomer cement and resin cement, independently of the polymerization method, were cytotoxic in fibroblast cells. Maximum cytotoxicity was observed in the presence of resin cement, which also showed genotoxicity, independently of being light polymerized.


Assuntos
Cimentos Dentários , Cimentos de Resina , Animais , Resinas Compostas , Cimentos Dentários/toxicidade , Fibroblastos , Cimentos de Ionômeros de Vidro/toxicidade , Teste de Materiais , Camundongos , Cimentos de Resina/toxicidade
3.
Clin Oral Investig ; 24(8): 2691-2700, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31713743

RESUMO

OBJECTIVES: This study aims to evaluate the cytocompatibility of three provisional restoration materials and predict neurotoxic potential of their monomers. These materials are Tab 2000® (methyl methacrylate based), ProTemp 4™ (bis-acrylic based) and Structur 3® (urethane dimethacrylate based). MATERIALS AND METHODS: Resin samples were incubated in a cell culture medium and the cytotoxic effects of these extracts were studied in 3T3 fibroblast cells through MTT and crystal violet assays as well as ROS assessment. The presence of relevant leached monomers was determined by HPLC. Additionally, the blood-brain barrier (BBB) permeability to these resin-based monomers was predicted using ACD/Labs algorithms model. RESULTS: Cell survival rates were compared with the resin extracts, and Structur 3® was statistically significant different from the others (p < 0.001) at all-time incubation periods. All materials induced a dose-dependent loss of cell viability; however, only Structur 3 extracts were cytotoxic against 3T3 fibroblasts. The highest cytotoxic effect (77%, p < 0.001) was observed at 24 h incubation period, which may be associated with the presence of urethane dimethacrylate (UDMA) leached monomers. Furthermore, the computational model showed that most monomers under study are expectedly capable of crossing the BBB. CONCLUSIONS: Our results showed that Structur 3® is not cytocompatible with our cell model and UDMA is a potential neurotoxic compound. CLINICAL RELEVANCE: These results indicate that only ProTemp 4™ and Tab 2000® are safe for provisional restorations.


Assuntos
Materiais Dentários/toxicidade , Resinas Compostas , Teste de Materiais , Metacrilatos , Poliuretanos
5.
Mutagenesis ; 28(6): 721-9, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24150595

RESUMO

Acrylamide (AA) is a well-known industrial chemical classified as a probable human carcinogen. Benign and malignant tumours at different sites, including the mammary gland, have been reported in rodents exposed to AA. This xenobiotic is also formed in many carbohydrate-rich foods prepared at high temperatures. For this reason, AA is an issue of concern in terms of human cancer risk. The epoxide glycidamide (GA) is thought to be the ultimate genotoxic AA metabolite. Despite extensive experimental and epidemiological data focused on AA-induced breast cancer, there is still lack of information on the deleterious effects induced by GA in mammary cells. The work reported here addresses the characterisation and modulation of cytotoxicity, generation of reactive oxygen species, formation of micronuclei (MN) and quantification of specific GA-DNA adducts in human MCF10A epithelial cells exposed to GA. The results show that GA significantly induces MN, impairs cell proliferation kinetics and decreases cell viability at high concentrations by mechanisms not involving oxidative stress. KU55933, an inhibitor of ataxia telangiectasia mutated kinase, enhanced the cytotoxicity of GA (P < 0.05), supporting a role of this enzyme in regulating the repair of GA-induced DNA lesions. Moreover, even at low GA levels, N7-GA-Gua adducts were generated in a linear dose-response manner in MCF10A cells. These results confirm that human mammary cells are susceptible to GA toxicity and reinforce the need for additional studies to clarify the potential correlation between dietary AA exposure and breast cancer risk in human populations.


Assuntos
Dano ao DNA , Compostos de Epóxi/toxicidade , Glândulas Mamárias Humanas/citologia , Mutagênicos/toxicidade , Antioxidantes/farmacologia , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citocinese , Adutos de DNA/metabolismo , Relação Dose-Resposta a Droga , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Compostos de Epóxi/farmacologia , Feminino , Glutationa/farmacologia , Humanos , Testes para Micronúcleos , Morfolinas/farmacologia , Mutagênicos/farmacologia , Oxirredução , Pironas/farmacologia , Espécies Reativas de Oxigênio/metabolismo
6.
Forensic Sci Int ; 264: 100-5, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27054591

RESUMO

The emergence and abuse of synthetic cannabinoids has been increasing as an alternative to cannabis, mainly among youth. As their appearance on the drug market has been recent, the pharmacological and toxicological profiles of these psychoactive substances are poorly understood. Current studies suggest that they have stronger effects compared to their natural alternatives and their metabolites retain affinity towards CB1 receptors in CNS. Since studies on its toxicological properties are scarce, the effects of the drug in human derived cell lines were investigated. The present study was designed to explore the toxicological impact of parent drug versus phase I metabolites of synthetic cannabinoids on human cells with and without CB1 receptor. The human cell line of neuroblastoma SH-SY5Y and human kidney cell line HEK-293T were exposed to JWH-018 and to its N-(3-hydroxypentyl) metabolite. Cell toxicity was evaluated using the MTT and LDH assay. Additionally, a dual staining methodology with fluorescent Annexin V-FITC and propidium iodide was performed to address the question of whether JWH-018 N-(3-hydroxypentyl) metabolite is inducing cell death through apoptosis or necrosis, in HEK293T and SH-SY5Y cell lines. The obtained results show that JWH-018 does not cause a statistically significant decrease in cell viability, in contrast to its N-(3-hydroxypentyl) metabolite, which at ≥25µM causes a significant decrease in cell viability. Both cell lines are affected by JWH-018 metabolite. Our results point to higher toxicity of JWH-018 metabolite when compared to its parent drug, suggesting a non-CB1 receptor mediated toxicological mechanism. Comparing the results from Annexin V/PI with MTT and LDH assays of SH-SY5Y and HEK293T in the presence of the synthetic cannabinoid metabolite, emerges the picture that cellular viability decreases and associated death is occurring through necrosis.


Assuntos
Drogas Ilícitas/farmacologia , Indóis/farmacologia , Naftalenos/farmacologia , Bioensaio/métodos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Toxicologia Forense , Células HEK293 , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA