Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Mol Divers ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39141207

RESUMO

Rheumatoid Arthritis (RA) is a persistent autoimmune disease affecting approximately 0.5-1 percent of the world population. RA prevalence is higher in woman aged between 35 and 50 years than in age matched men, though this difference is less evident among elderly patients. The profound immune specific effects of disrupted JAK 3 (Janus kinase 3) signaling highlight the possibility of therapeutic targeting of JAK3 as a highly specific mode of immune system suppression. To address the above problem which is unendurable to patients and in the hope to cater some respite to such suffering we have targeted JAK 3 protein and JAK/STAT signaling pathway with compounds downloaded from FDA database, and performed screening of all available compounds docked against JAK3 protein. The difference between the target protein and other proteins of the same family was studied using cross docking and the compounds having higher binding affinity to JAK3 protein also showed more selectivity towards the particular protein. Density functional theory and molecular dynamics simulation study was done to study the compounds at their atomic level to know more about their drug likeliness. At the end of the study and based on our analysis we have come up with three FDA approved drugs that can be proposed as a treatment option for Rheumatoid Arthritis.

2.
Front Chem ; 9: 735768, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34650958

RESUMO

Coronavirus disease-2019 (COVID-19) has caused a severe impact on almost all aspects of human life and economic development. Numerous studies are being conducted to find novel therapeutic strategies to overcome COVID-19 pandemic in a much effective way. Ulva intestinalis L. (Ui), a marine microalga, known for its antiviral property, was considered for this study to determine the antiviral efficacy against severe acute respiratory syndrome-associated Coronavirus-2 (SARS-CoV-2). The algal sample was dried and subjected to ethanolic extraction, followed by purification and analysis using gas chromatography-coupled mass spectrometry (GC-MS). Forty-three known compounds were identified and docked against the S1 receptor binding domain (RBD) of the spike (S) glycoprotein. The compounds that exhibited high binding affinity to the RBD of S1 protein were further analyzed for their chemical behaviour using conceptual density-functional theory (C-DFT). Finally, pharmacokinetic properties and drug-likeliness studies were carried out to test if the compounds qualified as potential leads. The results indicated that mainly phenols, polyenes, phytosteroids, and aliphatic compounds from the extract, such as 2,4-di-tert-butylphenol (2,4-DtBP), doconexent, 4,8,13-duvatriene-1,3-diol (DTD), retinoyl-ß-glucuronide 6',3'-lactone (RBGUL), and retinal, showed better binding affinity to the target. Pharmacokinetic validation narrowed the list to 2,4-DtBP, retinal and RBGUL as the possible antiviral candidates that could inhibit the viral spike protein effectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA