Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 39(48): 17222-17231, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37976431

RESUMO

The coffee-ring structure, which is the final drying pattern of a sessile suspension droplet, is a key factor in controlling the uniformity of the particulate deposits in various coatings. Two light-scattering methods, diffusing wave spectroscopy (DWS) and multispeckle DWS (MSDWS), were used to quantitatively distinguish temporal changes in particle mobility in evaporating suspension droplets containing micrometer-sized silica and polystyrene (PS) particles. The characteristic particle mobility was measured in terms of the mean square displacement in the early stage of drying, and the local particle dynamics around the edge and center regimes of the droplets during drying were analyzed using MSDWS. Hydroxyethyl cellulose (HEC), a hydrosoluble polymer, was added to the silica and PS suspensions to further investigate its role in suppressing or enhancing coffee-ring patterns based on particle-polymer interactions. Consequently, dried microstructures can be directly correlated with real-time drying dynamics, as well as the interactions between solutes by comprehensive light-scattering methods.

2.
J Am Chem Soc ; 144(50): 23044-23052, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36475699

RESUMO

A polymerization methodology is reported using sulfur monochloride (S2Cl2) as an alternative feedstock for polymeric materials. S2Cl2 is an inexpensive petrochemical derived from elemental sulfur (S8) but has numerous advantages as a reactive monomer for polymerization vs S8. This new process, termed sulfenyl chloride inverse vulcanization, exploits the high reactivity and miscibility of S2Cl2 with a broad range of allylic monomers to prepare soluble, high molar-mass linear polymers, segmented block copolymers, and crosslinked thermosets with greater synthetic precision than achieved using classical inverse vulcanization. This step-growth addition polymerization also allows for preparation of a new class of thiol-free, inexpensive, highly optically transparent thermosets (α = 0.045 cm-1 at 1310 nm), which exhibit among the best optical transparency and low birefringence relative to commodity optical polymers, while possessing a higher refractive index (n > 1.6) in the visible and near-infrared spectra. The fabrication of large-sized optical components is also demonstrated.


Assuntos
Cloretos , Polímeros , Enxofre , Luz , Polimerização
3.
Nano Lett ; 21(5): 2288-2295, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33645994

RESUMO

Micropatterns with a high stability, definition, and resolution are an absolute requirement in advanced display technology. Herein, patternable perovskite nanocrystals (PNCs) with excellent stability were prepared by exchanging pristine ligands with multifunctional polymer ligands, poly(2-cinnamoyloxyethyl methacrylate). The polymer backbone contains a cinnamoyl group that has been widely employed as a photo-cross-linker under 365 nm UV irradiation. Also, the terminal group is readily adjustable among NH3Cl, NH3Br, and NH3I, allowing us to obtain multicolored PNCs via instant anion exchange. Furthermore, the resulting ligand exchanged PNCs exhibited enhanced stability toward polar solvents without any undesirable influence on the structural or optical properties of the PNCs. Using anion exchanged PNCs, RGB microarrays with a subpixel size of 10 µm × 40 µm were successfully demonstrated. Our results highlight the versatility and feasibility of a simplified patterning strategy for nanomaterials, which can be generally applied in the fabrication of various optoelectronic devices.

4.
Int J Mol Sci ; 23(10)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35628178

RESUMO

The order-disorder transitions (ODT) of core-shell bottle brush copolymer and its structural isomers were investigated by dissipative particle dynamics simulations and theoretically by random phase approximation. Introducing a chain topology parameter λ which parametrizes linking points between M diblock chains each with N monomers, the degree of incompatibility at ODT ((χN)ODT; χ being the Flory-Huggins interaction parameter between constituent monomers) was predicted as a function of chain topology parameter (λ) and the number of linked diblock chains per bottle brush copolymer (M). It was found that there exists an optimal chain topology about λ at which (χN)ODT gets a minimum while the domain spacing remains nearly unchanged. The prediction provides a theoretical guideline for designing an optimal copolymer architecture capable of forming sub-10 nm periodic structures even with non-high χ components.


Assuntos
Polímeros , Polímeros/química
5.
Angew Chem Int Ed Engl ; 60(42): 22900-22907, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34402154

RESUMO

The production of elemental sulfur from petroleum refining has created a technological opportunity to increase the valorization of elemental sulfur by the creation of high-performance sulfur based plastics with improved thermomechanical properties, elasticity and flame retardancy. We report on a synthetic polymerization methodology to prepare the first example of sulfur based segmented multi-block polyurethanes (SPUs) and thermoplastic elastomers that incorporate an appreciable amount of sulfur into the final target material. This approach applied both the inverse vulcanization of S8 with olefinic alcohols and dynamic covalent polymerizations with dienes to prepare sulfur polyols and terpolyols that were used in polymerizations with aromatic diisocyanates and short chain diols. Using these methods, a new class of high molecular weight, soluble block copolymer polyurethanes were prepared as confirmed by Size Exclusion Chromatography, NMR spectroscopy, thermal analysis, and microscopic imaging. These sulfur-based polyurethanes were readily solution processed into large area free standing films where both the tensile strength and elasticity of these materials were controlled by variation of the sulfur polyol composition. SPUs with both high tensile strength (13-24 MPa) and ductility (348 % strain at break) were prepared, along with SPU thermoplastic elastomers (578 % strain at break) which are comparable values to classical thermoplastic polyurethanes (TPUs). The incorporation of sulfur into these polyurethanes enhanced flame retardancy in comparison to classical TPUs, which points to the opportunity to impart new properties to polymeric materials as a consequence of using elemental sulfur.

6.
Macromol Rapid Commun ; 41(4): e1900514, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31958190

RESUMO

Despite their capability, sub-10 nm periodic nano-patterns formed by strongly segregating block copolymer (BCP) thin films cannot be easily oriented perpendicular to the substrate due to the huge surface energy differences of the constituent blocks. To produce perpendicular nano-patterns, the interfacial energies of both the substrate and free interfaces should be controlled precisely to induce non-preferential wetting. Unfortunately, high-performance surface modification layers are challenging to design, and different kinds of surface modification methods must be devised respectively for each neutral layer and top coat. Furthermore, conventional approaches, largely based on spin-coating processes, are highly prone to defect formation and may readily cause dewetting at sub-10 nm thickness. To date, these obstacles have hampered the development of high-fidelity, sub-5 nm BCP patterns. Herein, an all-vapor phase deposition approach initiated chemical vapor deposition is demonstrated to form 9-nm-thick, uniform neutral bottom layer and top coat with exquisite control of composition and thickness. These layers are employed in BCP films to produce perpendicular cylinders with a diameter of ≈4 nm that propagate throughout a BCP thickness of up to ≈60 nm, corresponding to five natural domain spacings of the BCP. Such a robust approach will serve as an advancement for the reliable generation of sub-10 nm nano-patterns.


Assuntos
Nanoestruturas/química , Polímeros/química , Teste de Materiais , Metacrilatos/química , Nanoestruturas/ultraestrutura , Tamanho da Partícula , Polímeros/síntese química , Poliestirenos/química , Propriedades de Superfície
7.
Langmuir ; 35(16): 5549-5556, 2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-30929428

RESUMO

We investigated the effect of the morphological structure of a graphene oxide (GO) monolayer on the dewetting dynamics of the upper polymer thin films. The Langmuir-Schaefer (LS) technique was used to prepare a wrinkled GO ( wrGO) structure with a root mean square (rms) roughness of 22.7 Å. The dewetting behavior of poly(methyl methacrylate) (PMMA) thin films on the wrGO monolayers was perfectly prevented, whereas the PMMA thin films on a flat GO monolayer were dewetted at 203 °C. This wrinkle effect of the GO can be also obtained when the GOs monolayers are intercalated to the PMMA/polystyrene (PS) interface. In this multilayer, the flat GO monolayer at the interface between the PS and PMMA layers was spontaneously roughened with rms roughness of 46.9 Å after annealing and also prohibited the dewetting behavior. From the results, we found that to improve the compatibility of polymer blends by adding the two-dimensional nanosheets, it is important to control the morphological structure of the sheets at the interface, along with manipulation of the GO-polymer interactions.

8.
Macromol Rapid Commun ; 40(4): e1800728, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30500096

RESUMO

Block copolymer thin films are highly versatile and accessible materials capable of producing nanofeatures in the size regime of a few to hundreds of nanometers by a simple spin-coating-and-anneal process. Unfortunately, this simple protocol usually leads to parallel microdomains, which limits the applicability of such nanofeatures. A great deal of effort has been put into achieving perpendicular microdomains, but those that incorporate thermal annealing are arguably the most practical and reproducible in the lab and industry. This review discusses the recent ongoing efforts on various thermal approaches to achieving perpendicular microdomains in order to provide the readers with a toolbox to work with.


Assuntos
Polímeros/química , Temperatura , Teste de Materiais , Tamanho da Partícula , Propriedades de Superfície
9.
Soft Matter ; 14(6): 1026-1042, 2018 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-29328340

RESUMO

We systematically examined the polymer-mediated interparticle interactions between polymer-grafted nanoparticles (NPs) within chemically identical homopolymer matrices through experimental and computational efforts. In experiments, we prepared thermally stable gold NPs grafted with polystyrene (PS) or poly(methyl methacrylate) (PMMA), and they were mixed with corresponding homopolymers. The nanocomposites are well dispersed when the molecular weight ratio of free to grafted polymers, α, is small. For α above 10, NPs are partially aggregated or clumped within the polymer matrix. Such aggregation of NPs at large α has been understood as an autophobic dewetting behavior of free homopolymers on brushes. In order to theoretically investigate this phenomenon, we calculated two particle interaction using self-consistent field theory (SCFT) with our newly developed numerical scheme, adopting two-dimensional finite volume method (FVM) and multi-coordinate-system (MCS) scheme which makes use of the reflection symmetry between the two NPs. By calculating the polymer density profile and interparticle potential, we identified the effects of several parameters such as brush thickness, particle radius, α, brush chain polydispersity, and chain end mobility. It was found that increasing α is the most efficient method for promoting autophobic dewetting phenomenon, and the attraction keeps increasing up to α = 20. At small α values, high polydispersity in brush may completely nullify the autophobic dewetting, while at intermediate α values, its effect is still significant in that the interparticle attractions are heavily reduced. Our calculation also revealed that the grafting type is not a significant factor affecting the NP aggregation behavior. The simulation result qualitatively agrees with the dispersion/aggregation transition of NPs found in our experiments.

10.
Soft Matter ; 13(33): 5527-5534, 2017 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-28795184

RESUMO

We investigated the domain spacing of an ordered structure formed by polydisperse ARB-type triblock copolymers (triBCPs) with random middle R blocks consisting of A and B monomers. ARB-type triBCPs were synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization, and the dispersities of all samples were controlled as narrow as ∼1.2. From the bulk and film morphologies, it was found that the domain swelling increases as the content of middle R blocks increases, which implies that the middle R block even with a small content plays a critical role in dilating the domain spacing. Since the random middle R blocks are energetically neutral, they can be segregated into either A or B blocks. The strong stretching theory (SST) suggests that the dispersities of the resulting constituent blocks are maximized to reduce the elastic energy associated with chain stretching, thereby leading to the dilation of domain spacing.

11.
Soft Matter ; 11(21): 4242-50, 2015 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-25894536

RESUMO

The directed self-assembly (DSA) of block copolymers (BCPs) has emerged as an alternative method to replace or complement conventional photolithography as a result of the approximately 10 nm scale of microdomain ordering, the variety of microstructures that can be obtained and its compatibility with current lithographic processes. In DSA, BCP microdomains are controlled via guide patterns and two main techniques are popular: graphoepitaxy and chemoepitaxy assembly. We have demonstrated a simple and feasible technology for a DSA process by combining graphoepitaxy with "inexpensive" chemoepitaxial assembly to improve the alignment of the lamellar microdomains. For chemoepitaxial assembly, the hexagonal surface patterns from cross-linkable, cylinder-forming BCP were used to guide the graphoepitaxial assembly of the overlying BCP lamellar film. When the guiding patterns were prepared on the hexagonal patterns, it was found that the degree of lamellar alignment was significantly improved compared with the lamellar alignment on the homogeneous neutral layers. Simulation results suggested that the underlying hexagonal pattern can assist the lamellar alignment by reducing the large number of orientation states of the lamellar layers. This strategy is applicable to various nanofabrication processes that require a high degree of fidelity in controlling the nanopatterns over large areas with reduced costs.

12.
Soft Matter ; 11(28): 5666-77, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26082950

RESUMO

Constant rate compression isotherms of the air-water interfacial Langmuir films of poly(D,L-lactic acid-ran-glycolic acid) (PLGA) show a distinct feature of an exponential increase in surface pressure in the high surface polymer concentration regime. We have previously demonstrated that this abrupt increase in surface pressure is linked to the glass transition of the polymer film, but the detailed mechanism of this process is not fully understood. In order to obtain a molecular-level understanding of this behavior, we performed extensive characterizations of the surface mechanical, structural and rheological properties of Langmuir PLGA films at the air-water interface, using combined experimental techniques including the Langmuir film balance, X-ray reflectivity and double-wall-ring interfacial rheometry methods. We observed that the mechanical and structural responses of the Langmuir PLGA films are significantly dependent on the rate of film compression; the glass transition was induced in the PLGA film only at fast compression rates. Surprisingly, we found that this deformation rate dependence is also dependent on the humidity of the environment. With water acting as a plasticizer for the PLGA material, the diffusion of water molecules through the PLGA film seems to be the key factor in the determination of the glass transformation properties and thus the mechanical response of the PLGA film against lateral compression. Based on our combined results, we hypothesize the following mechanism for the compression-induced glass transformation of the Langmuir PLGA film; (1) initially, a humidified/non-glassy PLGA film is formed in the full surface-coverage region (where the surface pressure shows a plateau) during compression; (2) further compression leads to the collapse of the PLGA chains and the formation of new surfaces on the air side of the film, and this newly formed top layer of the PLGA film is transiently glassy in character because the water evaporation rate in the top surface region is momentarily faster than the humidification rate (due to the initial roughness of the newly formed surface); (3) after some time, the top layer itself becomes humidified through diffusion of water from the subphase, and thus it becomes non-glassy, leading to the relaxation of the applied compressive stress.


Assuntos
Vidro/química , Umidade , Ácido Láctico/química , Ácido Poliglicólico/química , Água/química , Ar , Difusão , Peso Molecular , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Pressão , Propriedades de Superfície , Temperatura
13.
Soft Matter ; 10(31): 5755-62, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-24979238

RESUMO

Self-assembly of a binary mixture of poly(styrene)336-block-poly(4-vinyl pyridine)25 (PS336-b-P4VP25) and poly(ethylene glycol)113-block-poly(4-hydroxy styrene)25 (PEG113-b-P4HS25) is shown to give rise to a cylindrical morphology in thin films through pyridine/phenol-based hetero-complementary hydrogen bonding interactions between the P4VP and P4HS copolymer segments. Removal of the cylindrical phase (PEG-b-P4HS) allowed access to porous materials having a pore surface decorated with P4VP polymer blocks. These segments could be transformed into cationic polyelectrolytes through quaternization of the pyridine nitrogen atom. The resulting positively charged nanopore surface could recognize negatively charged gold nanoparticles through electrostatic interactions. This work, therefore, outlines the utility of the supramolecular AB/CD type of block copolymer towards preparation of ordered porous thin films carrying a chemically defined channel surface with a large number of reactive sites.

14.
Adv Mater ; : e2404540, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136134

RESUMO

Optical Fourier surfaces (OFSs), characterized by sinusoidally profiled diffractive optical elements, can outperform traditional binary-type counterparts by minimizing optical noise through selectively driving diffraction at desired frequencies. While scanning probe lithography (SPL), gray-scale electron beam lithography (EBL), and holographic inscriptions are effective for fabricating OFSs, achieving full-color diffractions at fundamental efficiency limits is challenging. Here, an integrated manufacturing process is presented, validated theoretically and experimentally, for fully transparent OFSs reaching the fundamental limit of diffraction efficiency. Leveraging holographic inscriptions and soft nanoimprinting, this approach effectively addresses challenges in conventional OFS manufacturing, enabling scalable production of noise-free and maximally efficient OFSs with record-high throughput (1010-1012 µm2 h-1), surpassing SPL and EBL by 1010 times. Toward this end, a wafer-scale OFSs array is demonstrated consisting of full-color diffractive gratings, color graphics, and microlenses by the one-step nanoimprinting, which is readily compatible with rapid prototyping of OFSs even on curved panels, demanding for transformative optical devices such as augmented and virtual reality displays.

15.
ChemSusChem ; : e202401010, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842474

RESUMO

The ever-increasing demand for rechargeable battery systems in the era of electric vehicles has spurred extensive research into developing polymeric components for batteries, such as separators, polymer electrolytes, and binders. However, current battery systems rely on expensive and nonrenewable resources, which potentially have a negative environmental impact. Therefore, polymer materials derived from natural resources have gained significant attention, primarily due to their cost-effective and environmentally sustainable features. Moreover, natural feedstocks often possess highly polar functional groups and high molecular weights, offering desirable electro-chemo-mechanical features when applied as battery materials. More recently, various recycling and upcycling strategies for polymeric battery components have also been proposed given the substantial waste generation from end-of-life batteries. Recycling polymeric materials includes an overall process of recovering the components from spent batteries followed by regeneration into new materials. Polymer upcycling into battery materials involves transforming daily-used plastic waste into high-value-added battery components. This review aims to give a state-of-the-art overview of contemporary methods to develop sustainable polymeric materials and recycling/upcycling strategies for various battery applications.

16.
Nanoscale ; 15(6): 2595-2601, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36632796

RESUMO

Transition metal dichalcogenides (TMDs), e.g., MoS2, MoSe2, ReS2, and WSe2, are effective materials for advanced optoelectronics owing to their intriguing optical, structural, and electrical properties. Various approaches for manipulating the surface of the TMDs have been suggested to unleash the optoelectronic potential of the TMDs. Herein, we employed the self-assembly of the poly(styrene-b-methyl methacrylate) (PS-b-PMMA) block copolymer (BCP) to prepare a nanoporous pattern and generate nanostructured charge-transfer p-doping on the WSe2 surface, maximizing the depletion region in the absorber layer. After the spin coating and thermal annealing of PS-b-PMMA, followed by the selective etching of PMMA cylindrical microdomains using oxygen reactive-ion plasma, nanopatterned WOx with high electron affinity was grown on the WSe2 surface, forming a three-dimensional homojunction. The nanopatterned WOx significantly expanded the depletion region in the WSe2 layer, thus enhancing optoelectronic performance and self-powered photodetection. The proposed approach based on the nanostructured doping of the TMDs via BCP nanolithography can help create a promising platform for highly functional optoelectrical devices.

17.
Arch Dermatol Res ; 315(4): 885-893, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36376760

RESUMO

Acne vulgaris is a common skin disease caused by multifactorial reasons involving excessive sebum secretion and inflammation by Cutibacterium acnes (C. acnes). Various conventional therapies are available for the treatment of acne vulgaris; however, topical photodynamic therapy (PDT) has attracted much attention because of its great potential for sebum-reducing, anti-inflammatory, and antimicrobial activities. Although 5-aminolevulinic acid (ALA) has been broadly used as a photosensitizer for topical PDT, it has several limitations such as long incubation time, pain, and post-inflammatory hyperpigmentation. Here, we report a biocompatible nanoformulation consisting of methylene blue and salicylic acid (MBSD), as a potent PDT and acne therapeutics, enclosed within oleic acid. Photoactivated MBSD showed antimicrobial activity against C. acnes along with long-term stability. When 24 patients with acne were treated with MBSD and light irradiation 5 times at 1-week intervals, MBSD-based PDT exhibited a remarkable reduction in acne lesions and sebum production. In addition, the therapeutic procedure was painless and safe, without any adverse events. Therefore, MBSD is a promising topical PDT agent for biocompatible, safe, and effective acne treatment.


Assuntos
Acne Vulgar , Anti-Infecciosos , Fotoquimioterapia , Humanos , Azul de Metileno/uso terapêutico , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes , Ácido Aminolevulínico , Acne Vulgar/patologia , Resultado do Tratamento , Propionibacterium acnes , Anti-Infecciosos/uso terapêutico
18.
Nat Commun ; 14(1): 8412, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110407

RESUMO

The shear-rolling process is a promising directed self-assembly method that can produce high-quality sub-10 nm block copolymer line-space patterns cost-effectively and straightforwardly over a large area. This study presents a high temperature (280 °C) and rapid (~0.1 s) shear-rolling process that can achieve a high degree of orientation in a single process while effectively preventing film delamination, that can be applied to large-area continuous processes. By minimizing adhesion, normal forces, and ultimate shear strain of the polydimethylsiloxane pad, shearing was successfully performed without peeling up to 280 °C at which the chain mobility significantly increases. This method can be utilized for various high-χ block copolymers and surface neutralization processes. It enables the creation of block copolymer patterns with a half-pitch as small as 8 nm in a unidirectional way. Moreover, the 0.1-second rapid shear-rolling was successfully performed on long, 3-inch width polyimide flexible films to validate its potential for the roll-to-roll process.

19.
Polymers (Basel) ; 14(11)2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35683973

RESUMO

We computationally investigate the conformational behavior, "bridging" chain, between different the phase-separated domains vs "looping" chain on the same domain, for two chain architectures of ABA triblock copolymers, one with a linear architecture (L-TBC) and the other with comb architecture (C-TBC) at various segregation regimes using dissipative particle dynamics (DPD) simulations. The power-law relation between the bridge fraction (Φ) and the interaction parameter (χ) for C-TBC is found to be Φ∼χ-1.6 in the vicinity of the order-disorder transition (χODT), indicating a drastic conversion from the bridge to the loop conformation. When χ further increases, the bridge-loop conversions slow down to have the power law, Φ∼χ-0.18, approaching the theoretical power law Φ∼χ-1/9 predicted in the strong segregation limit. The conformational assessment conducted in the present study can provide a strategy of designing optimal material and processing conditions for triblock copolymer either with linear or comb architecture to be used for thermoplastic elastomer or molecular nanocomposites.

20.
Biosens Bioelectron ; 215: 114576, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35863134

RESUMO

The electrochemical applications of enzymes are often hampered by poor enzyme stability and low electron conductivity. In this work, a novel enzyme nanogel based on atom transfer radical polymerization (ATRP) has been developed for highly sensitive detection of glucose based on ferrocene (Fc) embedded in crosslinked polymer network nanogel. Enzyme surfaces are successively modified with Br initiator, and then in situ atom transfer radical polymerization (ATRP) was performed to build up crosslinked polyacrylamide network. The resulting single enzyme nanogel (ATRP-SEG) is uniform in size fairly. ATRP-SEG reveals bi-phasic inactivation, and the half-life of stable ATRP-SEG after 18-day incubation at 50 °C is 47 days, which is 197 times longer than that of free Gox (5.7 h). By introducing a ferrocene (Fc) containing redox polymer, poly(acrylamide-co-vinylferrocene), the half-life of Fc-ATRP-SEG after 18-day incubation at 50 °C is 49 days. Fc-ATRP-SEG is used for preparation of glucose-sensing electrode, and the sensitivity of Fc-ATRP-SEG electrode is 111 µA cm-2 mM-1, which is 366 and 1270 times higher than those of free GOx (0.303 µA cm-2 mM-1) and ATRP-SEG (0.0874 µA cm-2 mM-1), respectively. Fc-ATRP-SEG electrode maintained 90% of initial current density under 4 °C storage condition and repetitive usages every day for 7 days. Even the electrode repeatedly used in continuous harsh condition (250 rpm, room temperature), the current density maintained 96% after 12 h incubation at operational condition.


Assuntos
Técnicas Biossensoriais , Técnicas Biossensoriais/métodos , Glucose/química , Metalocenos , Nanogéis , Oxirredução , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA