Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Am J Physiol Regul Integr Comp Physiol ; 324(3): R329-R335, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36572551

RESUMO

Ischemic preconditioning (IPC), cyclical bouts of nonlethal ischemia, provides immediate protection against ischemic injury, which is evident both locally and remotely. Given the similarities in protective effects of exercise with ischemic preconditioning, we examined whether handgrip exercise also offers protection against endothelial ischemia-reperfusion (IR) injury and whether this protection is equally present in the local (exercised) and remote (contralateral, nonexercised) arm. Fifteen healthy males (age, 24 ± 3 yr; body mass index, 25 ± 2 kg/m2) attended the laboratory on three occasions. Bilateral brachial artery flow-mediated dilation (FMD) was examined at rest and after a temporary IR injury in the upper arm. Before the IR injury, in the dominant (local) arm, participants performed (randomized, counterbalanced): 1) 4 × 5 min unilateral handgrip exercise (50% maximal voluntary contraction), 2) 4 × 5 min unilateral IPC (220 mmHg), or 3) 4 × 5 min rest (control). Data were analyzed using repeated-measures general linear models. Allometrically scaled FMD declined after IR in the control condition (4.6 ± 1.3% to 2.2 ± 1.7%, P < 0.001), as well as following handgrip exercise (4.6 ± 1.6% to 3.4 ± 1.9%, P = 0.01), however, was significantly attenuated with IPC (4.5 ± 1.4% to 3.8 ± 3.5%, P = 0.14). There were no differences between the local and remote arm. Our findings reinforce the established protective effects of IPC in young, healthy males and also highlight a novel strategy to protect against IR injury with handgrip exercise, which warrants further study.


Assuntos
Precondicionamento Isquêmico , Traumatismo por Reperfusão , Adulto , Humanos , Masculino , Adulto Jovem , Endotélio Vascular , Força da Mão , Isquemia , Traumatismo por Reperfusão/prevenção & controle
2.
Eur J Appl Physiol ; 122(6): 1531-1541, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35429292

RESUMO

BACKGROUND: Humans display an age-related decline in cerebral blood flow and increase in blood pressure (BP), but changes in the underlying control mechanisms across the lifespan are less well understood. We aimed to; (1) examine the impact of age, sex, cardiovascular disease (CVD) risk, and cardio-respiratory fitness on dynamic cerebral autoregulation and cardiac baroreflex sensitivity, and (2) explore the relationships between dynamic cerebral autoregulation (dCA) and cardiac baroreflex sensitivity (cBRS). METHODS: 206 participants aged 18-70 years were stratified into age categories. Cerebral blood flow velocity was measured using transcranial Doppler ultrasound. Repeated squat-stand manoeuvres were performed (0.10 Hz), and transfer function analysis was used to assess dCA and cBRS. Multivariable linear regression was used to examine the influence of age, sex, CVD risk, and cardio-respiratory fitness on dCA and cBRS. Linear models determined the relationship between dCA and cBRS. RESULTS: Age, sex, CVD risk, and cardio-respiratory fitness did not impact dCA normalised gain, phase, or coherence with minimal change in all models (P > 0.05). cBRS gain was attenuated with age when adjusted for sex and CVD risk (young-older; ß = - 2.86 P < 0.001) along with cBRS phase (young-older; ß = - 0.44, P < 0.001). There was no correlation between dCA normalised gain and phase with either parameter of cBRS. CONCLUSION: Ageing was associated with a decreased cBRS, but dCA appears to remain unchanged. Additionally, our data suggest that sex, CVD risk, and cardio-respiratory fitness have little effect.


Assuntos
Barorreflexo , Doenças Cardiovasculares , Barorreflexo/fisiologia , Velocidade do Fluxo Sanguíneo , Pressão Sanguínea/fisiologia , Doenças Cardiovasculares/etiologia , Circulação Cerebrovascular/fisiologia , Homeostase/fisiologia , Humanos , Ultrassonografia Doppler Transcraniana
3.
Rheumatology (Oxford) ; 60(7): 3107-3120, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33521818

RESUMO

OBJECTIVES: To summarize existing evidence and quantify the effects of physical activity on vascular function and structure in autoimmune rheumatic diseases (ARDs). METHODS: Databases were searched (through March 2020) for clinical trials evaluating the effects of physical activity interventions on markers of micro- and macrovascular function and macrovascular structure in ARDs. Studies were combined using random effects meta-analysis, which was conducted using Hedges' g. Meta-analyses were performed on each of the following outcomes: microvascular function [i.e. skin blood flow or vascular conductance responses to acetylcholine (ACh) or sodium nitropusside (SNP) administration]; macrovascular function [i.e. brachial flow-mediated dilation (FMD%) or brachial responses to glyceryl trinitrate (GTN%); and macrovascular structure [i.e. aortic pulse wave velocity (PWV)]. RESULTS: Ten studies (11 trials) with a total of 355 participants were included in this review. Physical activity promoted significant improvements in microvascular [skin blood flow responses to ACh, g = 0.92 (95% CI 0.42, 1.42)] and macrovascular function [FMD%, g = 0.94 (95% CI 0.56, 1.02); GTN%, g = 0.53 (95% CI 0.09, 0.98)]. Conversely, there was no evidence for beneficial effects of physical activity on macrovascular structure [PWV, g = -0.41 (95% CI -1.13, 0.32)]. CONCLUSIONS: Overall, the available clinical trials demonstrated a beneficial effect of physical activity on markers of micro- and macrovascular function but not on macrovascular structure in patients with ARDs. The broad beneficial impact of physical activity across the vasculature identified in this review support its role as an effective non-pharmacological management strategy for patients with ARDs.


Assuntos
Doenças Autoimunes/fisiopatologia , Endotélio Vascular/fisiopatologia , Exercício Físico/fisiologia , Microvasos/fisiopatologia , Doenças Reumáticas/fisiopatologia , Humanos , Microcirculação , Análise de Onda de Pulso , Fluxo Sanguíneo Regional , Vasodilatação/fisiologia , Vasodilatadores
4.
Digit Health ; 9: 20552076231183552, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37426588

RESUMO

Introduction: Adherence to unsupervised exercise is poor, yet unsupervised exercise interventions are utilised in most healthcare settings. Thus, investigating novel ways to enhance adherence to unsupervised exercise is essential. This study aimed to examine the feasibility of two mobile health (mHealth) technology-supported exercise and physical activity (PA) interventions to increase adherence to unsupervised exercise. Methods: Eighty-six participants were randomised to online resources (n = 44, females n = 29) or MOTIVATE (n = 42, females n = 28). The online resources group had access to booklets and videos to assist in performing a progressive exercise programme. MOTIVATE participants received exercise counselling sessions supported via mHealth biometrics which allowed instant participant feedback on exercise intensity, and communication with an exercise specialist. Heart rate (HR) monitoring, survey-reported exercise behaviour and accelerometer-derived PA were used to quantify adherence. Remote measurement techniques were used to assess anthropometrics, blood pressure, HbA1c and lipid profiles. Results: HR-derived adherence rates were 22 ± 34% and 113 ± 68% in the online resources and MOTIVATE groups, respectively. Self-reported exercise behaviour demonstrated moderate (Cohen's d = 0.63, CI = 0.27 to 0.99) and large effects (Cohen's d = 0.88, CI = 0.49 to 1.26) in favour of online resources and MOTIVATE groups, respectively. When dropouts were included, 84% of remotely gathered data were available, with dropouts removed data availability was 94%. Conclusion: Data suggest both interventions have a positive impact on adherence to unsupervised exercise but MOTIVATE enables participants to meet recommended exercise guidelines. Nevertheless, to maximise adherence to unsupervised exercise, future appropriately powered trials should explore the effectiveness of the MOTIVATE intervention.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA