RESUMO
Recent evidence suggested that nonirradiated cancer-associated fibroblasts (CAFs) promoted aggressive phenotypes of cancer cells through epithelial-mesenchymal transition (EMT). Hepatoma-derived growth factor (HDGF) is a radiosensitive gene of esophageal squamous cell carcinoma (ESCC). This study aimed to investigate the effect of irradiated fibroblasts on EMT and HDGF expression of ESCC. Our study demonstrated that coculture with nonirradiated fibroblasts significantly increased the invasive ability of ESCC cells and the increased invasiveness was further accelerated when they were cocultured with irradiated fibroblasts. Scattering of ESCC cells was also accelerated by the supernatant from irradiated fibroblasts. Exposure of ESCC cells to supernatant from irradiated fibroblasts resulted in decreased E-cadherin, increased vimentin in vitro and ß-catenin was demonstrated to localize to the nucleus in tumor cells with irradiated fibroblasts in vivo models. The expression of HDGF and ß-catenin were increased in both fibroblasts and ESCC cells of irradiated group in vitro and in vivo models. Interestingly, the tumor cells adjoining the stromal fibroblasts displayed strong nuclear HDGF immunoreactivity, which suggested the occurrence of a paracrine effect of fibroblasts on HDGF expression. These data suggested that irradiated fibroblasts promoted invasion, growth, EMT and HDGF expression of ESCC.
Assuntos
Carcinoma de Células Escamosas/metabolismo , Comunicação Celular/efeitos da radiação , Transição Epitelial-Mesenquimal/efeitos da radiação , Neoplasias Esofágicas/metabolismo , Fibroblastos/efeitos da radiação , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Invasividade NeoplásicaRESUMO
BIIB021 is a novel, orally available inhibitor of heat shock protein 90 (Hsp90) that is currently in phase I/II clinical trials. BIIB021 induces the apoptosis of various types of tumor cells in vitro and in vivo. The aim of this study is to investigate the effect of BIIB021 on the radiosensitivity of esophageal squamous cell carcinoma (ESCC). The results indicated that BIIB021 exhibited strong antitumor activity in ESCC cell lines, either as a single agent or in combination with radiation. BIIB021 significantly downregulated radioresistant proteins including EGFR, Akt, Raf-1 of ESCC cell lines, increased apoptotic cells and enhanced G2 arrest that is more radiosensitive cell cycle phase. These results suggest that this synthetic Hsp90 inhibitor simultaneously affects multiple pathways involved in tumor development and progression in the ESCC setting and may represent a better strategy for the treatment of ESCC patients, either as a monotherapy or a radiosensitizer.
Assuntos
Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos da radiação , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Adenina/análogos & derivados , Apoptose/efeitos da radiação , Linhagem Celular Tumoral , Humanos , Piridinas , Tolerância a Radiação/efeitos dos fármacos , Radiossensibilizantes/farmacologiaRESUMO
Hepatoma-derived growth factor (HDGF) is a novel jack-of-all-trades in cancer. Here we quantify the prognostic impact of this biomarker and assess how consistent is its expression in solid tumors. A comprehensive search strategy was used to search relevant literature updated on October 3, 2014 in PubMed, EMBASE and WEB of Science. Correlations between HDGF expression and clinicopathological features or cancer prognosis was analyzed. All pooled HRs or ORs were derived from random-effects models. Twenty-six studies, primarily in Eastern Asia, covering 2,803 patients were included in the analysis, all of them published during the past decade. We found that HDGF overexpression was significantly associated with overall survival (OS) (HROS=2.35, 95%CI=2.04-2.71, p<0.001) and disease free survival (DFS) (HRDFS=2.25, 95%CI =1.81-2.79, p<0.001) in solid tumors, especially in non-small cell lung cancer, hepatocellular carcinoma and cholangiocarcinoma (CCA). Moreover, multivariate survival analysis showed that HDGF overexpression was an independent predictor of poor prognosis (HROS=2.41, 95%CI: 2.02-2.81, p<0.001; HRDFS=2.39, 95%CI: 1.77-3.24, p<0.001). In addition, HDGF overexpression was significantly associated with tumor category (T3-4 versus T1-2, OR=2.12, 95%CI: 1.17-3.83, p=0.013) and lymph node status (N+ versus N-, OR=2.37, 95%CI: 1.31-4.29, p=0.03) in CCA. This study provides a comprehensive examination of the literature available on the association of HDGF overexpression with OS, DFS and some clinicopathological features in solid tumors. Meta-analysis results provide evidence that HDGF may be a new indicator of poor cancer prognosis. Considering the limitations of the eligible studies, other large-scale prospective trials must be conducted to clarify the prognostic value of HDGF in predicting cancer survival.