Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37926721

RESUMO

Postpartum psychosis is a severe psychiatric disorder that occurs following childbirth. Due to its severity, postpartum psychosis is generally treated in an inpatient hospital setting. In this original contribution, we present the ambulatory treatment of postpartum psychosis and advocate that an ambulatory setting can be feasible under the right circumstances. In this article, we provide an overview of the Israeli legal system and its implications when treating maternal mental illness. We present the process by which we treat a woman with postpartum psychosis in an ambulatory setting. We provide a case example of the successful treatment of postpartum psychosis in an ambulatory setting and list general strategies to utilize. We demonstrate that an ambulatory approach to postpartum psychosis is not only possible, but also has significant benefits. We suggest that the ambulatory treatment of postpartum psychosis was developed in Israel as a direct result of its liberal legal system. Specifically, because of the legal system's value on patient autonomy, acute psychiatric illnesses such as postpartum psychosis are at times treated in outpatient settings. Additionally, we posit that Israel's unique culture provides the framework to support its implementation. We review the challenges of the treatment in the case example as well as other anticipated challenges that may arise with a broader application of this approach. Our hope is that this novel presentation will lead to more nuanced and holistic treatment of postpartum psychosis.

2.
BMC Pregnancy Childbirth ; 21(1): 630, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34535116

RESUMO

BACKGROUND: Postpartum depression is a widespread disorder, adversely affecting the well-being of mothers and their newborns. We aim to utilize machine learning for predicting risk of postpartum depression (PPD) using primary care electronic health records (EHR) data, and to evaluate the potential value of EHR-based prediction in improving the accuracy of PPD screening and in early identification of women at risk. METHODS: We analyzed EHR data of 266,544 women from the UK who gave first live birth between 2000 and 2017. We extracted a multitude of socio-demographic and medical variables and constructed a machine learning model that predicts the risk of PPD during the year following childbirth. We evaluated the model's performance using multiple validation methodologies and measured its accuracy as a stand-alone tool and as an adjunct to the standard questionnaire-based screening by Edinburgh postnatal depression scale (EPDS). RESULTS: The prevalence of PPD in the analyzed cohort was 13.4%. Combing EHR-based prediction with EPDS score increased the area under the receiver operator characteristics curve (AUC) from 0.805 to 0.844 and the sensitivity from 0.72 to 0.76, at specificity of 0.80. The AUC of the EHR-based prediction model alone varied from 0.72 to 0.74 and decreased by only 0.01-0.02 when applied as early as before the beginning of pregnancy. CONCLUSIONS: PPD risk prediction using EHR data may provide a complementary quantitative and objective tool for PPD screening, allowing earlier (pre-pregnancy) and more accurate identification of women at risk, timely interventions and potentially improved outcomes for the mother and child.


Assuntos
Depressão Pós-Parto/epidemiologia , Medição de Risco/métodos , Adolescente , Adulto , Área Sob a Curva , Estudos de Coortes , Registros Eletrônicos de Saúde , Feminino , Humanos , Aprendizado de Máquina , Pessoa de Meia-Idade , Gravidez , Fatores de Risco , Reino Unido/epidemiologia , Adulto Jovem
3.
Cells ; 13(17)2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39273076

RESUMO

Epithelial-to-mesenchymal transition (EMT) plays a major role in breast cancer progression and the development of drug resistance. We have previously demonstrated a trans-differentiation therapeutic approach targeting invasive dedifferentiated cancer cells. Using a combination of PPARγ agonists and MEK inhibitors, we forced the differentiation of disseminating breast cancer cells into post-mitotic adipocytes. Utilizing murine breast cancer cells, we demonstrated a broad class effect of PPARγ agonists and MEK inhibitors in inducing cancer cell trans-differentiation into adipocytes. Both Rosiglitazone and Pioglitazone effectively induced adipogenesis in cancer cells, marked by PPARγ and C/EBPα upregulation, cytoskeleton rearrangement, and lipid droplet accumulation. All tested MEK inhibitors promoted adipogenesis in the presence of TGFß, with Cobimetinib showing the most prominent effects. A metastasis ex vivo culture from a patient diagnosed with triple-negative breast cancer demonstrated a synergistic upregulation of PPARγ with the combination of Pioglitazone and Cobimetinib. Our results highlight the potential for new therapeutic strategies targeting cancer cell plasticity and the dedifferentiation phenotype in aggressive breast cancer subtypes. Combining differentiation treatments with standard therapeutic approaches may offer a strategy to overcome drug resistance.


Assuntos
Diferenciação Celular , PPAR gama , Pioglitazona , PPAR gama/metabolismo , PPAR gama/agonistas , Humanos , Animais , Camundongos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Pioglitazona/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Adipogenia/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Rosiglitazona/farmacologia , Azetidinas/farmacologia , Neoplasias da Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Piperidinas/farmacologia
4.
Front Med (Lausanne) ; 10: 1221484, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37840996

RESUMO

Introduction: Ex vivo organ cultures (EVOC) were recently optimized to sustain cancer tissue for 5 days with its complete microenvironment. We examined the ability of an EVOC platform to predict patient response to cancer therapy. Methods: A multicenter, prospective, single-arm observational trial. Samples were obtained from patients with newly diagnosed bladder cancer who underwent transurethral resection of bladder tumor and from core needle biopsies of patients with metastatic cancer. The tumors were cut into 250 µM slices and cultured within 24 h, then incubated for 96 h with vehicle or intended to treat drug. The cultures were then fixed and stained to analyze their morphology and cell viability. Each EVOC was given a score based on cell viability, level of damage, and Ki67 proliferation, and the scores were correlated with the patients' clinical response assessed by pathology or Response Evaluation Criteria in Solid Tumors (RECIST). Results: The cancer tissue and microenvironment, including endothelial and immune cells, were preserved at high viability with continued cell division for 5 days, demonstrating active cell signaling dynamics. A total of 34 cancer samples were tested by the platform and were correlated with clinical results. A higher EVOC score was correlated with better clinical response. The EVOC system showed a predictive specificity of 77.7% (7/9, 95% CI 0.4-0.97) and a sensitivity of 96% (24/25, 95% CI 0.80-0.99). Conclusion: EVOC cultured for 5 days showed high sensitivity and specificity for predicting clinical response to therapy among patients with muscle-invasive bladder cancer and other solid tumors.

5.
Cancer Discov ; 13(8): 1826-1843, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37449843

RESUMO

Germline BRCA-associated pancreatic ductal adenocarcinoma (glBRCA PDAC) tumors are susceptible to platinum and PARP inhibition. The clinical outcomes of 125 patients with glBRCA PDAC were stratified based on the spectrum of response to platinum/PARP inhibition: (i) refractory [overall survival (OS) <6 months], (ii) durable response followed by acquired resistance (OS <36 months), and (iii) long-term responders (OS >36 months). Patient-derived xenografts (PDX) were generated from 25 patients with glBRCA PDAC at different clinical time points. Response to platinum/PARP inhibition in vivo and ex vivo culture (EVOC) correlated with clinical response. We deciphered the mechanisms of resistance in glBRCA PDAC and identified homologous recombination (HR) proficiency and secondary mutations restoring partial functionality as the most dominant resistant mechanism. Yet, a subset of HR-deficient (HRD) patients demonstrated clinical resistance. Their tumors displayed basal-like molecular subtype and were more aneuploid. Tumor mutational burden was high in HRD PDAC and significantly higher in tumors with secondary mutations. Anti-PD-1 attenuated tumor growth in a novel humanized glBRCA PDAC PDX model. This work demonstrates the utility of preclinical models, including EVOC, to predict the response of glBRCA PDAC to treatment, which has the potential to inform time-sensitive medical decisions. SIGNIFICANCE: glBRCA PDAC has a favorable response to platinum/PARP inhibition. However, most patients develop resistance. Additional treatment options for this unique subpopulation are needed. We generated model systems in PDXs and an ex vivo system (EVOC) that faithfully recapitulate these specific clinical scenarios as a platform to investigate the mechanisms of resistance for further drug development. This article is highlighted in the In This Issue feature, p. 1749.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Platina/farmacologia , Platina/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Mutação , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Neoplasias Pancreáticas
6.
Ann Neurol ; 69(2): 303-11, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21387375

RESUMO

OBJECTIVE: To report clinical and immunological investigations of contactin-associated protein-like 2 (Caspr2), an autoantigen of encephalitis and peripheral nerve hyperexcitability (PNH) previously attributed to voltage-gated potassium channels (VGKC). METHODS: Clinical analysis was performed on patients with encephalitis, PNH, or both. Immunoprecipitation and mass spectrometry were used to identify the antigen and to develop an assay with Caspr2-expressing cells. Immunoabsorption with Caspr2 and comparative immunostaining of brain and peripheral nerve of wild-type and Caspr2-null mice were used to assess antibody specificity. RESULTS: Using Caspr2-expressing cells, antibodies were identified in 8 patients but not in 140 patients with several types of autoimmune or viral encephalitis, PNH, or mutations of the Caspr2-encoding gene. Patients' antibodies reacted with brain and peripheral nerve in a pattern that colocalized with Caspr2. This reactivity was abrogated after immunoabsorption with Caspr2 and was absent in tissues from Caspr2-null mice. Of the 8 patients with Caspr2 antibodies, 7 had encephalopathy or seizures, 5 neuropathy or PNH, and 1 isolated PNH. Three patients also had myasthenia gravis, bulbar weakness, or symptoms that initially suggested motor neuron disease. None of the patients had active cancer; 7 responded to immunotherapy and were healthy or only mildly disabled at last follow-up (median, 8 months; range, 6-84 months). INTERPRETATION: Caspr2 is an autoantigen of encephalitis and PNH previously attributed to VGKC antibodies. The occurrence of other autoantibodies may result in a complex syndrome that at presentation could be mistaken for a motor neuron disorder. Recognition of this disorder is important, because it responds to immunotherapy.


Assuntos
Autoanticorpos/imunologia , Autoantígenos/imunologia , Encefalite/imunologia , Síndrome de Isaacs/imunologia , Proteínas de Membrana/imunologia , Proteínas do Tecido Nervoso/imunologia , Idoso , Animais , Especificidade de Anticorpos/imunologia , Feminino , Humanos , Imuno-Histoquímica , Imunoprecipitação , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/genética , Nervos Periféricos/imunologia
7.
Biomedicines ; 10(9)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36140319

RESUMO

High-grade serous ovarian carcinoma (HGSOC) is the most common type of epithelial ovarian cancer. The majority of cases are diagnosed at advanced stages, when intraperitoneal (IP) spread has already occurred. Despite significant surgical and chemotherapeutic advances in HGSOC treatment over the past decades, survival rates with HGSOC have only modestly improved. Chimeric antigen receptor (CAR)-T cells enable T cells to directly bind to tumor-associated antigens in a major histocompatibility complex-independent manner, thereby inducing tumor rejection. While CAR-T cell therapy shows great promise in hematological malignancies, its use in solid tumors is limited. Therefore, innovative approaches are needed to increase the specificity of CAR-modified T cells against solid tumors. The aim of this study was to assess the efficacy and safety of intraperitoneal (IP) versus intravenous (IV) CAR-T cell therapy in the treatment of HGSOC. We constructed a CAR that targets the ErbB2/HER2 protein (ErbB2CAR), which is overexpressed in HGSOC, and evaluated the functionality of ErbB2CAR on ovarian cancer cell lines (OVCAR8, SKOV3, and NAR). Our findings show that an IP injection of ErbB2CAR-T cells to tumor-bearing mice led to disease remission and increased survival compared to the IV route. Moreover, we found that IP-injected ErbB2CART cells circulate to a lesser extent, making them safer for non-tumor tissues than IV-injected cells. Further supporting our findings, we show that the effect of ErbB2CAR-T cells on primary HGSOC tumors is correlated with ErbB2 expression. Together, these data demonstrate the advantages of an IP administration of CAR-T cells over IV administration, offering not only a safer strategy but also the potential for counteracting the effect of ErbB2CAR in HGSOC. Significance: IP-injected ErbB2CAR-T cells led to disease remission and increased survival compared to the IV route. These findings demonstrate the advantages of IP administration, offering a safe treatment strategy with the potential for counteracting the effect of ErbB2CAR in HGSOC.

8.
J Neurosci ; 30(7): 2480-9, 2010 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-20164332

RESUMO

Caspr and Caspr2 regulate the formation of distinct axonal domains around the nodes of Ranvier. Caspr is required for the generation of a membrane barrier at the paranodal junction (PNJ), whereas Caspr2 serves as a membrane scaffold that clusters Kv1 channels at the juxtaparanodal region (JXP). Both Caspr and Caspr2 interact with protein 4.1B, which may link the paranodal and juxtaparanodal adhesion complexes to the axonal cytoskeleton. To determine the role of protein 4.1B in the function of Caspr proteins, we examined the ability of transgenic Caspr and Caspr2 mutants lacking their 4.1-binding sequence (d4.1) to restore Kv1 channel clustering in Caspr- and Caspr2-null mice, respectively. We found that Caspr-d4.1 was localized to the PNJ and is able to recruit the paranodal adhesion complex components contactin and NF155 to this site. Nevertheless, in axons expressing Caspr-d4.1, Kv1 channels were often detected at paranodes, suggesting that the interaction of Caspr with protein 4.1B is necessary for the generation of an efficient membrane barrier at the PNJ. We also found that the Caspr2-d4.1 transgene did not accumulate at the JXP, even though it was targeted to the axon, demonstrating that the interaction with protein 4.1B is required for the accumulation of Caspr2 and Kv1 channels at the juxtaparanodal axonal membrane. In accordance, we show that Caspr2 and Kv1 channels are not clustered at the JXP in 4.1B-null mice. Our results thus underscore the functional importance of protein 4.1B in the organization of peripheral myelinated axons.


Assuntos
Axônios/fisiologia , Moléculas de Adesão Celular Neuronais/fisiologia , Proteínas de Membrana/fisiologia , Fibras Nervosas Mielinizadas/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Animais , Moléculas de Adesão Celular Neuronais/genética , Linhagem Celular Transformada , Citoplasma/metabolismo , Gânglios Espinais/citologia , Humanos , Imunoprecipitação/métodos , Canal de Potássio Kv1.1/metabolismo , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos , Camundongos Transgênicos , Proteínas dos Microfilamentos , Mutação/genética , Proteínas do Tecido Nervoso/genética , Proteínas de Neurofilamentos/metabolismo , Junção Neuromuscular/metabolismo , Neurônios/metabolismo , Ligação Proteica/fisiologia , Canais de Sódio/metabolismo , Transfecção/métodos , Proteínas Supressoras de Tumor/deficiência
9.
Sci Transl Med ; 13(602)2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34261798

RESUMO

Lung and bladder cancers are mostly incurable because of the early development of drug resistance and metastatic dissemination. Hence, improved therapies that tackle these two processes are urgently needed to improve clinical outcome. We have identified RSK4 as a promoter of drug resistance and metastasis in lung and bladder cancer cells. Silencing this kinase, through either RNA interference or CRISPR, sensitized tumor cells to chemotherapy and hindered metastasis in vitro and in vivo in a tail vein injection model. Drug screening revealed several floxacin antibiotics as potent RSK4 activation inhibitors, and trovafloxacin reproduced all effects of RSK4 silencing in vitro and in/ex vivo using lung cancer xenograft and genetically engineered mouse models and bladder tumor explants. Through x-ray structure determination and Markov transient and Deuterium exchange analyses, we identified the allosteric binding site and revealed how this compound blocks RSK4 kinase activation through binding to an allosteric site and mimicking a kinase autoinhibitory mechanism involving the RSK4's hydrophobic motif. Last, we show that patients undergoing chemotherapy and adhering to prophylactic levofloxacin in the large placebo-controlled randomized phase 3 SIGNIFICANT trial had significantly increased (P = 0.048) long-term overall survival times. Hence, we suggest that RSK4 inhibition may represent an effective therapeutic strategy for treating lung and bladder cancer.


Assuntos
Neoplasias Pulmonares , Neoplasias da Bexiga Urinária , Animais , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Humanos , Pulmão/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Camundongos , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética
10.
J Neurosci ; 26(19): 5230-9, 2006 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-16687515

RESUMO

Paranodal junctions of myelinated nerve fibers are important for saltatory conduction and function as paracellular and membrane protein diffusion barriers flanking nodes of Ranvier. The formation of these specialized axoglial contacts depends on the presence of three cell adhesion molecules: neurofascin 155 on the glial membrane and a complex of Caspr and contactin on the axon. We isolated axonal and glial membranes highly enriched in these paranodal proteins and then used mass spectrometry to identify additional proteins associated with the paranodal axoglial junction. This strategy led to the identification of three novel components of the paranodal cytoskeleton: ankyrinB, alphaII spectrin, and betaII spectrin. Biochemical and immunohistochemical analyses revealed that these proteins associate with protein 4.1B in a macromolecular complex that is concentrated at central and peripheral paranodal junctions in the adult and during early myelination. Furthermore, we show that the paranodal localization of ankyrinB is disrupted in Caspr-null mice with aberrant paranodal junctions, demonstrating that paranodal neuron-glia interactions regulate the organization of the underlying cytoskeleton. In contrast, genetic disruption of the juxtaparanodal protein Caspr2 or the nodal cytoskeletal protein betaIV spectrin did not alter the paranodal cytoskeleton. Our results demonstrate that the paranodal junction contains specialized cytoskeletal components that may be important to stabilize axon-glia interactions and contribute to the membrane protein diffusion barrier found at paranodes.


Assuntos
Anquirinas/metabolismo , Axônios/metabolismo , Junções Comunicantes/metabolismo , Neuroglia/metabolismo , Nós Neurofibrosos/metabolismo , Espectrina/metabolismo , Animais , Células Cultivadas , Citoesqueleto/metabolismo , Camundongos , Ratos
11.
Neuron ; 81(1): 120-9, 2014 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-24411736

RESUMO

Inhibitory microcircuits are wired with a precision that underlies their complex regulatory roles in neural information processing. In the spinal cord, one specialized class of GABAergic interneurons (GABApre) mediates presynaptic inhibitory control of sensory-motor synapses. The synaptic targeting of these GABAergic neurons exhibits an absolute dependence on proprioceptive sensory terminals, yet the molecular underpinnings of this specialized axoaxonic organization remain unclear. Here, we show that sensory expression of an NB2 (Contactin5)/Caspr4 coreceptor complex, together with spinal interneuron expression of NrCAM/CHL1, directs the high-density accumulation of GABAergic boutons on sensory terminals. Moreover, genetic elimination of NB2 results in a disproportionate stripping of inhibitory boutons from high-density GABApre-sensory synapses, suggesting that the preterminal axons of GABApre neurons compete for access to individual sensory terminals. Our findings define a recognition complex that contributes to the assembly and organization of a specialized GABAergic microcircuit.


Assuntos
Axônios/fisiologia , Moléculas de Adesão Celular Neuronais/fisiologia , Terminações Pré-Sinápticas/fisiologia , Células Receptoras Sensoriais/citologia , Medula Espinal/citologia , Sinapses/fisiologia , Animais , Animais Recém-Nascidos , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Biologia Computacional , Citometria de Fluxo , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Modelos Neurológicos , Mutação/genética , Parvalbuminas/genética , Parvalbuminas/metabolismo , Células Receptoras Sensoriais/classificação , Células Receptoras Sensoriais/metabolismo , Fatores de Transcrição/metabolismo
12.
J Cell Biol ; 192(2): 243-50, 2011 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-21263026

RESUMO

During peripheral nerve myelination, Schwann cells sort larger axons, ensheath them, and eventually wrap their membrane to form the myelin sheath. These processes involve extensive changes in cell shape, but the exact mechanisms involved are still unknown. Neural Wiskott-Aldrich syndrome protein (N-WASP) integrates various extracellular signals to control actin dynamics and cytoskeletal reorganization through activation of the Arp2/3 complex. By generating mice lacking N-WASP in myelinating Schwann cells, we show that N-WASP is crucial for myelination. In N-WASP-deficient nerves, Schwann cells sort and ensheath axons, but most of them fail to myelinate and arrest at the promyelinating stage. Yet, a limited number of Schwann cells form unusually short internodes, containing thin myelin sheaths, with the occasional appearance of myelin misfoldings. These data suggest that regulation of actin filament nucleation in Schwann cells by N-WASP is crucial for membrane wrapping, longitudinal extension, and myelination.


Assuntos
Membrana Celular/metabolismo , Bainha de Mielina/fisiologia , Células de Schwann/citologia , Células de Schwann/metabolismo , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo , Animais , Células Cultivadas , Camundongos , Camundongos Knockout , Proteína Neuronal da Síndrome de Wiskott-Aldrich/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA