Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Pathog ; 12(10): e1005948, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27783673

RESUMO

Hantaviruses are important emerging human pathogens and are the causative agents of serious diseases in humans with high mortality rates. Like other members in the Bunyaviridae family their M segment encodes two glycoproteins, GN and GC, which are responsible for the early events of infection. Hantaviruses deliver their tripartite genome into the cytoplasm by fusion of the viral and endosomal membranes in response to the reduced pH of the endosome. Unlike phleboviruses (e.g. Rift valley fever virus), that have an icosahedral glycoprotein envelope, hantaviruses display a pleomorphic virion morphology as GN and GC assemble into spikes with apparent four-fold symmetry organized in a grid-like pattern on the viral membrane. Here we present the crystal structure of glycoprotein C (GC) from Puumala virus (PUUV), a representative member of the Hantavirus genus. The crystal structure shows GC as the membrane fusion effector of PUUV and it presents a class II membrane fusion protein fold. Furthermore, GC was crystallized in its post-fusion trimeric conformation that until now had been observed only in Flavi- and Togaviridae family members. The PUUV GC structure together with our functional data provides intriguing evolutionary and mechanistic insights into class II membrane fusion proteins and reveals new targets for membrane fusion inhibitors against these important pathogens.


Assuntos
Virus Puumala/química , Proteínas do Envelope Viral/química , Animais , Chlorocebus aethiops , Cristalografia por Raios X , Conformação Molecular , Conformação Proteica , Células Vero
2.
J Biol Chem ; 288(33): 23914-27, 2013 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-23788644

RESUMO

Serum paraoxonases (PONs) are detoxifying lactonases that were first identified in mammals. Three mammalian families are known, PON1, 2, and 3 that reside primarily in the liver. They catalyze essentially the same reaction, lactone hydrolysis, but differ in their substrate specificity. Although some members are highly specific, others have a broad specificity profile. The evolutionary origins and substrate specificities of PONs therefore remain poorly understood. Here, we report a newly identified family of bacterial PONs, and the reconstruction of the ancestor of the three families of mammalian PONs. Both the mammalian ancestor and the characterized bacterial PONX_OCCAL were found to efficiently hydrolyze N-acyl homoserine lactones that mediate quorum sensing in many bacteria, including pathogenic ones. The mammalian PONs may therefore relate to a newly identified family of bacterial, PON-like "quorum-quenching" lactonases. The appearance of PONs in metazoa is likely to relate to innate immunity rather than detoxification. Unlike the bacterial PON, the mammalian ancestor also hydrolyzes, with low efficiency, lactones other than homoserine lactones, thus preceding the detoxifying functions that diverged later in two of the three mammalian families. The bifunctionality of the mammalian ancestor and the trade-off between the quorum-quenching and detoxifying lactonase activities explain the broad and overlapping specificities of some mammalian PONs versus the singular specificity of others.


Assuntos
Arildialquilfosfatase/sangue , Hidrolases de Éster Carboxílico/genética , Evolução Molecular , Inativação Metabólica/genética , Mamíferos/metabolismo , 4-Butirolactona/análogos & derivados , 4-Butirolactona/química , 4-Butirolactona/metabolismo , Sequência de Aminoácidos , Animais , Arildialquilfosfatase/química , Bactérias/enzimologia , Hidrolases de Éster Carboxílico/química , Variação Genética , Humanos , Hidrólise , Cinética , Dados de Sequência Molecular , Mutação/genética , Filogenia , Percepção de Quorum , Homologia de Sequência de Aminoácidos , Homologia Estrutural de Proteína , Especificidade por Substrato
3.
Protein Eng Des Sel ; 28(11): 507-18, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26275856

RESUMO

Ancestral reconstruction is a powerful tool for studying protein evolution as well as for protein design and engineering. However, in many positions alternative predictions with relatively high marginal probabilities exist, and thus the prediction comprises an ensemble of near-ancestor sequences that relate to the historical ancestor. The ancestral phenotype should therefore be explored for the entire ensemble, rather than for the sequence comprising the most probable amino acid at all positions [the most probable ancestor (mpa)]. To this end, we constructed libraries that sample ensembles of near-ancestor sequences. Specifically, we identified positions where alternatively predicted amino acids are likely to affect the ancestor's structure and/or function. Using the serum paraoxonases (PONs) enzyme family as a test case, we constructed libraries that combinatorially sample these alternatives. We next characterized these libraries, reflecting the vertebrate and mammalian PON ancestors. We found that the mpa of vertebrate PONs represented only one out of many different enzymatic phenotypes displayed by its ensemble. The mammalian ancestral library, however, exhibited a homogeneous phenotype that was well represented by the mpa. Our library design strategy that samples near-ancestor ensembles at potentially critical positions therefore provides a systematic way of examining the robustness of inferred ancestral phenotypes.


Assuntos
Biblioteca Gênica , Modelos Moleculares , Filogenia , Alinhamento de Sequência/métodos , Análise de Sequência de Proteína/métodos , Animais , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/genética , Humanos , Mamíferos/genética , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA