Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Infect Dis ; 228(Suppl 7): S701-S711, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37474248

RESUMO

Marburg virus (MARV) causes a hemorrhagic fever disease in human and nonhuman primates with high levels of morbidity and mortality. Concerns about weaponization of aerosolized MARV have spurred the development of nonhuman primate (NHP) models of aerosol exposure. To address the potential threat of aerosol exposure, a monoclonal antibody that binds MARV glycoprotein was tested, MR186YTE, for its efficacy as a prophylactic. MR186YTE was administered intramuscularly to NHPs at 15 or 5 mg/kg 1 month prior to MARV aerosol challenge. Seventy-five percent (3/4) of the 15 mg/kg dose group and 50% (2/4) of the 5 mg/kg dose group survived. Serum analyses showed that the NHP dosed with 15 mg/kg that succumbed to infection developed an antidrug antibody response and therefore had no detectable MR186YTE at the time of challenge. These results suggest that intramuscular dosing of mAbs may be a clinically useful prophylaxis for MARV aerosol exposure.


Assuntos
Doença do Vírus de Marburg , Marburgvirus , Animais , Humanos , Anticorpos Monoclonais , Primatas , Aerossóis
2.
bioRxiv ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38496658

RESUMO

Crimean-Congo hemorrhagic fever virus can cause lethal disease in humans yet there are no approved medical countermeasures. Viral glycoprotein GP38, unique to Nairoviridae, is a target of protective antibodies, but extensive mapping of the human antibody response to GP38 has not been previously performed. Here, we isolated 188 GP38-specific antibodies from human survivors of infection. Competition experiments showed that these antibodies bind across five distinct antigenic sites, encompassing eleven overlapping regions. Additionally, we reveal structures of GP38 bound with nine of these antibodies targeting different antigenic sites. Although GP38-specific antibodies were non-neutralizing, several antibodies were found to have protection equal to or better than murine antibody 13G8 in two highly stringent rodent models of infection. Together, these data expand our understanding regarding this important viral protein and inform the development of broadly effective CCHFV antibody therapeutics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA