Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Mol Psychiatry ; 26(4): 1044-1059, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33328588

RESUMO

Scientists and health professionals are exhaustively trying to contain the coronavirus disease 2019 (COVID-19) pandemic by elucidating viral invasion mechanisms, possible drugs to prevent viral infection/replication, and health cares to minimize individual exposure. Although neurological symptoms are being reported worldwide, neural acute and long-term consequences of SARS-CoV-2 are still unknown. COVID-19 complications are associated with exacerbated immunoinflammatory responses to SARS-CoV-2 invasion. In this scenario, pro-inflammatory factors are intensely released into the bloodstream, causing the so-called "cytokine storm". Both pro-inflammatory factors and viruses may cross the blood-brain barrier and enter the central nervous system, activating neuroinflammatory responses accompanied by hemorrhagic lesions and neuronal impairment, which are largely described processes in psychiatric disorders and neurodegenerative diseases. Therefore, SARS-CoV-2 infection could trigger and/or worse brain diseases. Moreover, patients with central nervous system disorders associated to neuroimmune activation (e.g. depression, Parkinson's and Alzheimer's disease) may present increased susceptibility to SARS-CoV-2 infection and/or achieve severe conditions. Elevated levels of extracellular ATP induced by SARS-CoV-2 infection may trigger hyperactivation of P2X7 receptors leading to NLRP3 inflammasome stimulation as a key mediator of neuroinvasion and consequent neuroinflammatory processes, as observed in psychiatric disorders and neurodegenerative diseases. In this context, P2X7 receptor antagonism could be a promising strategy to prevent or treat neurological complications in COVID-19 patients.


Assuntos
Encefalopatias/complicações , Encefalopatias/patologia , COVID-19/complicações , COVID-19/patologia , Neuroimunomodulação , Receptores Purinérgicos P2X7/metabolismo , SARS-CoV-2/patogenicidade , Encefalopatias/tratamento farmacológico , Encefalopatias/metabolismo , COVID-19/imunologia , COVID-19/metabolismo , Humanos , Inflamassomos/imunologia , Inflamassomos/metabolismo , Pandemias , SARS-CoV-2/imunologia
2.
Cytometry A ; 99(2): 152-163, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33438373

RESUMO

Glioblastoma (GBM) is one of the most malignant and devastating brain tumors. The presence of highly therapy-resistant GBM cell subpopulations within the tumor mass, rapid invasion into brain tissues and reciprocal interactions with stromal cells in the tumor microenvironment contributes to an inevitable fatal prognosis for the patients. We highlight the most recent evidence of GBM cell crosstalk with mesenchymal stem cells (MSCs), which occurs either by direct cell-cell interactions via gap junctions and microtubules or cell fusion. MSCs and GBM paracrine interactions are commonly observed and involve cytokine signaling, regulating MSC tropism toward GBM, their intra-tumoral distribution, and immune system responses. MSC-promoted effects depending on their cytokine and receptor expression patterns are considered critical for GBM progression. MSC origin, tumor heterogeneity and plasticity may also determine the outcome of such interactions. Kinins and kinin-B1 and -B2 receptors play important roles in information flow between MSCs and GBM cells. Kinin-B1 receptor activity favors tumor migration and fusion of MSCs and GBM cells. Flow and image (tissue) cytometry are powerful tools to investigate GBM cell and MSC crosstalk and are applied to analyze and characterize several other cancer types.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Células-Tronco Mesenquimais , Linhagem Celular Tumoral , Humanos , Cininas , Microambiente Tumoral
3.
Cell Mol Neurobiol ; 41(4): 619-649, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32468442

RESUMO

The Autism Spectrum Disorder (ASD) consists of a prevalent and heterogeneous group of neurodevelopmental diseases representing a severe burden to affected individuals and their caretakers. Despite substantial improvement towards understanding of ASD etiology and pathogenesis, as well as increased social awareness and more intensive research, no effective drugs have been successfully developed to resolve the main and most cumbersome ASD symptoms. Hence, finding better treatments, which may act as "disease-modifying" agents, and novel biomarkers for earlier ASD diagnosis and disease stage determination are needed. Diverse mutations of core components and consequent malfunctions of several cell signaling pathways have already been found in ASD by a series of experimental platforms, including genetic associations analyses and studies utilizing pre-clinical animal models and patient samples. These signaling cascades govern a broad range of neurological features such as neuronal development, neurotransmission, metabolism, and homeostasis, as well as immune regulation and inflammation. Here, we review the current knowledge on signaling pathways which are commonly disrupted in ASD and autism-related conditions. As such, we further propose ways to translate these findings into the development of genetic and biochemical clinical tests for early autism detection. Moreover, we highlight some putative druggable targets along these pathways, which, upon further research efforts, may evolve into novel therapeutic interventions for certain ASD conditions. Lastly, we also refer to the crosstalk among these major signaling cascades as well as their putative implications in therapeutics. Based on this collective information, we believe that a timely and accurate modulation of these prominent pathways may shape the neurodevelopment and neuro-immune regulation of homeostatic patterns and, hopefully, rescue some (if not all) ASD phenotypes.


Assuntos
Transtorno do Espectro Autista/tratamento farmacológico , Transtorno do Espectro Autista/metabolismo , Terapia de Alvo Molecular , Transdução de Sinais , Animais , Transtorno do Espectro Autista/epidemiologia , Sobrevivência Celular , Citocinas/metabolismo , Humanos , Redes e Vias Metabólicas
4.
Reprod Biol Endocrinol ; 18(1): 3, 2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31948459

RESUMO

BACKGROUND: Only a few microbial studies have conducted in IVF (in vitro fertilization), showing the high-variety bacterial contamination of IVF culture media to cause damage to or even loss of cultured oocytes and embryos. We aimed to determine the prevalence and counts of bacteria in IVF samples, and to associate them with clinical outcome. METHODS: The studied samples from 50 infertile couples included: raw (n = 48), processed (n = 49) and incubated (n = 50) sperm samples, and IVF culture media (n = 50). The full microbiome was analyzed by 454 pyrosequencing and quantitative analysis by real-time quantitative PCR. Descriptive statistics, t-, Mann-Whitney tests and Spearman's correlation were used for comparison of studied groups. RESULTS: The study involved normozoospermic men. Normal vaginal microbiota was present in 72.0% of female partners, while intermediate microbiota and bacterial vaginosis were diagnosed in 12.0 and 16.0%, respectively. The decreasing bacterial loads were found in raw (35.5%), processed (12.0%) and sperm samples used for oocyte insemination (4.0%), and in 8.0% of IVF culture media. The most abundant genera of bacteria in native semen and IVF culture media were Lactobacillus, while in other samples Alphaproteobacteria prevailed. Staphylococcus sp. was found only in semen from patients with inflammation. Phylum Bacteroidetes was in negative correlation with sperm motility and Alphaproteobacteria with high-quality IVF embryos. CONCLUSION: Our study demonstrates that IVF does not occur in a sterile environment. The prevalent bacteria include classes Bacilli in raw semen and IVF culture media, Clostridia in processed and Bacteroidia in sperm samples used for insemination. The presence of Staphylococcus sp. and Alphaproteobacteria associated with clinical outcomes, like sperm and embryo quality.


Assuntos
Meios de Cultura/análise , Técnicas de Cultura Embrionária/normas , Fertilização in vitro/normas , Microbiota/fisiologia , Sêmen/microbiologia , Adulto , Técnicas de Cultura Embrionária/métodos , Escherichia coli/isolamento & purificação , Feminino , Fertilização in vitro/métodos , Humanos , Masculino , Injeções de Esperma Intracitoplásmicas/métodos , Injeções de Esperma Intracitoplásmicas/normas , Staphylococcus/isolamento & purificação
5.
Int J Mol Sci ; 21(11)2020 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-32512908

RESUMO

With increasing life expectancy, demands for dental tissue and whole-tooth regeneration are becoming more significant. Despite great progress in medicine, including regenerative therapies, the complex structure of dental tissues introduces several challenges to the field of regenerative dentistry. Interdisciplinary efforts from cellular biologists, material scientists, and clinical odontologists are being made to establish strategies and find the solutions for dental tissue regeneration and/or whole-tooth regeneration. In recent years, many significant discoveries were done regarding signaling pathways and factors shaping calcified tissue genesis, including those of tooth. Novel biocompatible scaffolds and polymer-based drug release systems are under development and may soon result in clinically applicable biomaterials with the potential to modulate signaling cascades involved in dental tissue genesis and regeneration. Approaches for whole-tooth regeneration utilizing adult stem cells, induced pluripotent stem cells, or tooth germ cells transplantation are emerging as promising alternatives to overcome existing in vitro tissue generation hurdles. In this interdisciplinary review, most recent advances in cellular signaling guiding dental tissue genesis, novel functionalized scaffolds and drug release material, various odontogenic cell sources, and methods for tooth regeneration are discussed thus providing a multi-faceted, up-to-date, and illustrative overview on the tooth regeneration matter, alongside hints for future directions in the challenging field of regenerative dentistry.


Assuntos
Odontogênese , Regeneração , Dente/fisiologia , Animais , Materiais Biocompatíveis , Esmalte Dentário/fisiologia , Portadores de Fármacos , Humanos , Transdução de Sinais , Células-Tronco/metabolismo , Engenharia Tecidual , Alicerces Teciduais
6.
Biomolecules ; 9(12)2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31817802

RESUMO

Bone tissue engineering is an ever-changing, rapidly evolving, and highly interdisciplinary field of study, where scientists try to mimic natural bone structure as closely as possible in order to facilitate bone healing. New insights from cell biology, specifically from mesenchymal stem cell differentiation and signaling, lead to new approaches in bone regeneration. Novel scaffold and drug release materials based on polysaccharides gain increasing attention due to their wide availability and good biocompatibility to be used as hydrogels and/or hybrid components for drug release and tissue engineering. This article reviews the current state of the art, recent developments, and future perspectives in polysaccharide-based systems used for bone regeneration.


Assuntos
Regeneração Óssea , Osso e Ossos , Regeneração Tecidual Guiada/métodos , Polissacarídeos/química , Animais , Materiais Biocompatíveis/química , Transplante Ósseo/métodos , Osso e Ossos/citologia , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Diferenciação Celular , Humanos , Hidrogéis/química , Células-Tronco Mesenquimais , Neovascularização Fisiológica , Osteogênese , Engenharia Tecidual/métodos , Alicerces Teciduais
7.
Front Cell Neurosci ; 13: 476, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31787881

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder characterized by decreased dopamine bioavailability in the substantia nigra and the striatum. Taking into account that adenosine-5'-triphosphate (ATP) and its metabolites are intensely released in the 6-hydroxydopamine (6-OHDA) animal model of PD, screening of purinergic receptor gene expression was performed. Effects of pharmacological P2Y6 or P2X7 receptor antagonism were studied in preventing or reversing hemiparkinsonian behavior and dopaminergic deficits in this animal model. P2X7 receptor antagonism with Brilliant Blue G (BBG) at a dose of 75 mg/kg re-established the dopaminergic nigrostriatal pathway in rats injured with 6-OHDA. Selective P2Y6 receptor antagonism by MRS2578 prevented dopaminergic neuron death in SH-SY5Y cells in vitro and in vivo in the substantia nigra of rats injured with 6-OHDA. Moreover, in vivo analysis showed that both treatments were accompanied by a reduction of microglial activation in the substantia nigra. Altogether, these data provide evidence that antagonism of P2X7 or P2Y6 receptors results in neuroregenerative or neuroprotective effects, respectively, possibly through modulation of neuroinflammatory responses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA