Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Glob Chang Biol ; 23(2): 767-781, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27474896

RESUMO

Understanding uncertainties in land cover projections is critical to investigating land-based climate mitigation policies, assessing the potential of climate adaptation strategies and quantifying the impacts of land cover change on the climate system. Here, we identify and quantify uncertainties in global and European land cover projections over a diverse range of model types and scenarios, extending the analysis beyond the agro-economic models included in previous comparisons. The results from 75 simulations over 18 models are analysed and show a large range in land cover area projections, with the highest variability occurring in future cropland areas. We demonstrate systematic differences in land cover areas associated with the characteristics of the modelling approach, which is at least as great as the differences attributed to the scenario variations. The results lead us to conclude that a higher degree of uncertainty exists in land use projections than currently included in climate or earth system projections. To account for land use uncertainty, it is recommended to use a diverse set of models and approaches when assessing the potential impacts of land cover change on future climate. Additionally, further work is needed to better understand the assumptions driving land use model results and reveal the causes of uncertainty in more depth, to help reduce model uncertainty and improve the projections of land cover.


Assuntos
Mudança Climática , Incerteza , Clima , Planeta Terra , Previsões , Plantas
2.
Environ Manage ; 55(6): 1285-99, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25877457

RESUMO

Shale gas is currently being explored in Europe as an alternative energy source to conventional oil and gas. There is, however, increasing concern about the potential environmental impacts of shale gas extraction by hydraulic fracturing (fracking). In this study, we focussed on the potential impacts on regional water resources within the Baltic Basin in Poland, both in terms of quantity and quality. The future development of the shale play was modeled for the time period 2015-2030 using the LUISA modeling framework. We formulated two scenarios which took into account the large range in technology and resource requirements, as well as two additional scenarios based on the current legislation and the potential restrictions which could be put in place. According to these scenarios, between 0.03 and 0.86% of the total water withdrawals for all sectors could be attributed to shale gas exploitation within the study area. A screening-level assessment of the potential impact of the chemicals commonly used in fracking was carried out and showed that due to their wide range of physicochemical properties, these chemicals may pose additional pressure on freshwater ecosystems. The legislation put in place also influenced the resulting environmental impacts of shale gas extraction. Especially important are the protection of vulnerable ground and surface water resources and the promotion of more water-efficient technologies.


Assuntos
Conservação dos Recursos Naturais/métodos , Ecossistema , Monitoramento Ambiental/métodos , Indústria de Petróleo e Gás , Recursos Hídricos , Conservação dos Recursos Naturais/legislação & jurisprudência , Fontes Geradoras de Energia , Monitoramento Ambiental/legislação & jurisprudência , Regulamentação Governamental , Gás Natural , Indústria de Petróleo e Gás/legislação & jurisprudência , Polônia , Recursos Hídricos/provisão & distribuição
3.
Appl Spat Anal Policy ; 16(4): 1463-1492, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38020868

RESUMO

Spatial models jointly simulating population and land-use change provide support for policy-making, by allowing to explore territorial developments under alternative scenarios and resulting impacts in the environment, economy and society. However, their ability to reproduce observed spatial patterns is rarely evaluated through model validation. This lack of insight prevents researchers and policy-makers of fully grasping the ability of existing models to provide sensible projections of future land use and population density. In this article, we address this gap by performing a model validation of the LUISA Territorial Modelling Platform, a spatial model jointly simulating population and land use at a fine resolution (100 m) in the European Union and United Kingdom. In particular, we compare observed and simulated patterns of population and urban residential land-use change for the period of 1990-2015, and evaluate the model performance according to different degrees of urbanisation. The results show that model performance can vary depending on the context, even when the same data and methods are uniformly applied. The model performed consistently well in urban areas characterized by compact urban growth, but poorly where residential development occurred predominantly in scattered patterns across rural areas. Overall, the model tends to favour the formation of densely populated, highly accessible urban conglomerations, which often do not entirely correspond to the observed patterns. Based on the validation results, we propose directions for further model improvement and development. Model validation should be regarded as a critical step, and an integral part, in the process of developing models for policy support. Supplementary Information: The online version contains supplementary material available at 10.1007/s12061-023-09518-x.

4.
Landsc Ecol ; 30(3): 517-534, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26120251

RESUMO

Green infrastructure (GI), a network of nature, semi-natural areas and green space, delivers essential ecosystem services which underpin human well-being and quality of life. Maintaining ecosystem services through the development of GI is therefore increasingly recognized by policies as a strategy to cope with potentially changing conditions in the future. This paper assessed how current trends of land-use change have an impact on the aggregated provision of eight ecosystem services at the regional scale of the European Union, measured by the Total Ecosystem Services Index (TESI8). Moreover, the paper reports how further implementation of GI across Europe can help maintain ecosystem services at baseline levels. Current demographic, economic and agricultural trends, which affect land use, were derived from the so called Reference Scenario. This scenario is established by the European Commission to assess the impact of energy and climate policy up to 2050. Under the Reference Scenario, economic growth, coupled with the total population, stimulates increasing urban and industrial expansion. TESI8 is expected to decrease across Europe between 0 and 5 % by 2020 and between 10 and 15 % by 2050 relative to the base year 2010. Based on regression analysis, we estimated that every additional percent increase of the proportion of artificial land needs to be compensated with an increase of 2.2 % of land that qualifies as green infrastructure in order to maintain ecosystem services at 2010 levels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA