Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Europace ; 18(2): 288-93, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26333380

RESUMO

AIMS: Malfunctions of cardiac implantable electronical devices (CIED) have been described after high-energy radiation therapy even in the absence of direct exposure to ionizing radiation, due to diffusion of neutrons (n) causing soft errors in inner circuits. The purpose of the study was to analyse the effect of scattered radiation on different types and models of CIED and the possible sources of malfunctions. METHODS AND RESULTS: Fifty-nine explanted CIED were placed on an anthropomorphous phantom of tissue-equivalent material, and a high-energy photon (15 MV) radiotherapy course (total dose = 70 Gy) for prostate treatment was performed. All devices were interrogated before and after radiation. Radiation dose, the electromagnetic field, and neutron fluence at the CIED site were measured. Thirty-four pacemakers (PM) and 25 implantable cardioverter-defibrillators (ICD) were analysed. No malfunctions were detected before radiation. After radiation a software malfunction was evident in 13 (52%) ICD and 6 (18%) PM; no significant electromagnetic field or photon radiations were detected in the thoracic region. Neutron capture was demonstrated by the presence of the (198)Au((197)Au + n) or (192)Ir((191)Ir + n) isotope activation; it was significantly greater in ICD than in PM and non-significantly greater in damaged devices. A greater effect in St Jude PM (2/2 damaged), Boston (9/11), and St Jude ICD (3/6) and in older ICD models was observed; the year of production was not relevant in PM. CONCLUSION: High-energy radiation can cause different malfunctions on CIED, particularly ICD, even without direct exposure to ionizing radiation due to scattered radiation of neutrons produced by the linear accelerator.


Assuntos
Desfibriladores Implantáveis , Marca-Passo Artificial , Radioterapia/efeitos adversos , Análise de Falha de Equipamento , Humanos , Teste de Materiais , Nêutrons , Desenho de Prótese , Falha de Prótese , Dosagem Radioterapêutica , Espalhamento de Radiação , Design de Software
2.
Phys Med ; 74: 19-29, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32388466

RESUMO

Proton therapy has gained interest in recent years due to its excellent clinical outcomes. However, the lack of accurate biological data, especially in the Bragg peak region of clinical beams, makes it difficult to implement biophysically optimized treatment plans in clinical practice. In this context, low energy proton accelerator facilities provide the perfect environment to collect good radiobiological data, as they can produce high LET beams with narrow energy distributions. This study presents the radiobiology beam line that has been designed at the 18 MeV proton cyclotron facility at the National Centre of Accelerators (CNA, Seville, Spain), to perform irradiations of mono-layer cell cultures. To ensure that all the cells receive the same dose with a suitable dose rate, low beam intensities and broad and homogeneous beam profiles are necessary. To do so, at the CNA an unfocused beam has been used, broadened with a 500 µm thick aluminium scattering foil. Homogeneous dose profiles, with deviations lower than 10% have been obtained over a circular surface of 35 mm diameter for an incident average energy of 12.8 MeV. Further, a Monte Carlo simulation of the beam line has been developed with Geant4, and benchmarked towards experimental measurements, with differences generally below 1%. Once validated, the code has been used, together with an ionization chamber, for dosimetry studies, to characterize the beam and monitor the dose. Finally, cultures of Human Bone Osteosarcoma cells (U2OS) have been successfully irradiated at the radiobiology beam line, investigating the effects of radiation in terms of DNA damage induction.


Assuntos
Ciclotrons , Terapia com Prótons/instrumentação , Radiobiologia , Método de Monte Carlo , Radiometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA