Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Cell ; 132(2): 273-85, 2008 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-18243102

RESUMO

During photosynthesis, two photoreaction centers located in the thylakoid membranes of the chloroplast, photosystems I and II (PSI and PSII), use light energy to mobilize electrons to generate ATP and NADPH. Different modes of electron flow exist, of which the linear electron flow is driven by PSI and PSII, generating ATP and NADPH, whereas the cyclic electron flow (CEF) only generates ATP and is driven by the PSI alone. Different environmental and metabolic conditions require the adjustment of ATP/NADPH ratios and a switch of electron distribution between the two photosystems. With the exception of PGR5, other components facilitating CEF are unknown. Here, we report the identification of PGRL1, a transmembrane protein present in thylakoids of Arabidopsis thaliana. Plants lacking PGRL1 show perturbation of CEF, similar to PGR5-deficient plants. We find that PGRL1 and PGR5 interact physically and associate with PSI. We therefore propose that the PGRL1-PGR5 complex facilitates CEF in eukaryotes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Membrana/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Tilacoides/química , Trifosfato de Adenosina/biossíntese , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Cloroplastos/metabolismo , DNA de Plantas/genética , DNA de Plantas/isolamento & purificação , Transporte de Elétrons , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Cinética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Modelos Biológicos , Dados de Sequência Molecular , Mutação , NADP/biossíntese , Oxirredução , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Plastoquinona/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos , Frações Subcelulares/metabolismo
2.
Mycorrhiza ; 30(5): 601-610, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32621137

RESUMO

The concept of symbiosis can be described as a continuum of interactions between organisms ranging from mutualism to parasitism that can also change over time. Arbuscular mycorrhizal fungi (AMF) are among the most important obligate plant symbionts. Once the symbiosis is well established, mycorrhizal plants are more tolerant to biotic or abiotic stresses, so the AMF relationship with the host plant is generally described as mutualistic. However, little is known about AMF effects on the plant during the early stages of root colonization. The aim of this work was to assess the type of interaction (mutualistic or parasitic) between the arbuscular mycorrhizal (AM) fungus Funelliformis mosseae and Solanum lycopersicum cv. Rio Grande plants, at 7, 14, 21, and 28 days after inoculation (DAI), considering that in the adopted experimental design (one plant per pot), the seedling was the only carbon source for fungus development in the absence of common mycorrhizal networks with other plants. At each harvest, mycorrhizal colonization, shoot and root weights, morphometric parameters, and photosynthetic efficiency were evaluated. The presence of the AM fungus in the tomato root system was observed starting from the 14th DAI, and its level increased over time. Few effects of the fungus presence on the considered parameters were observed, and no stress symptoms ever appeared; so, we can state that the fungus behaved as a mutualistic symbiont during the early stages of plant growth. Moreover, a trend towards a positive effect on plant growth was observed at 28 DAI in mycorrhizal plants.


Assuntos
Glomeromycota , Micorrizas , Solanum lycopersicum , Raízes de Plantas , Simbiose
4.
Plant Physiol ; 165(1): 207-26, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24664203

RESUMO

The chloroplast F1Fo-ATP synthase/ATPase (cpATPase) couples ATP synthesis to the light-driven electrochemical proton gradient. The cpATPase is a multiprotein complex and consists of a membrane-spanning protein channel (comprising subunit types a, b, b', and c) and a peripheral domain (subunits α, ß, γ, δ, and ε). We report the characterization of the Arabidopsis (Arabidopsis thaliana) CONSERVED ONLY IN THE GREEN LINEAGE160 (AtCGL160) protein (AtCGL160), conserved in green algae and plants. AtCGL160 is an integral thylakoid protein, and its carboxyl-terminal portion is distantly related to prokaryotic ATP SYNTHASE PROTEIN1 (Atp1/UncI) proteins that are thought to function in ATP synthase assembly. Plants without AtCGL160 display an increase in xanthophyll cycle activity and energy-dependent nonphotochemical quenching. These photosynthetic perturbations can be attributed to a severe reduction in cpATPase levels that result in increased acidification of the thylakoid lumen. AtCGL160 is not an integral cpATPase component but is specifically required for the efficient incorporation of the c-subunit into the cpATPase. AtCGL160, as well as a chimeric protein containing the amino-terminal part of AtCGL160 and Synechocystis sp. PCC6803 Atp1, physically interact with the c-subunit. We conclude that AtCGL160 and Atp1 facilitate the assembly of the membranous part of the cpATPase in their hosts, but loss of their functions provokes a unique compensatory response in each organism.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , ATPases de Cloroplastos Translocadoras de Prótons/metabolismo , Membranas Intracelulares/enzimologia , Proteínas das Membranas dos Tilacoides/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Clorofila/metabolismo , Clorofila A , DNA Bacteriano/genética , Transporte de Elétrons , Fluorescência , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Dados de Sequência Molecular , Complexos Multiproteicos/metabolismo , Fotossíntese , Folhas de Planta/metabolismo , Ligação Proteica , Biossíntese de Proteínas , Estrutura Terciária de Proteína , Subunidades Proteicas/metabolismo , Alinhamento de Sequência , Termodinâmica , Proteínas das Membranas dos Tilacoides/química , Tilacoides/metabolismo , Transcrição Gênica
5.
Plant J ; 75(4): 671-84, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23647309

RESUMO

The oxygen-evolving complex of eukaryotic photosystem II (PSII) consists of four extrinsic subunits, PsbO (33 kDa), PsbP (23 kDa), PsbQ (17 kDa) and PsbR (10 kDa), encoded by seven nuclear genes, PsbO1 (At5g66570), PsbO2 (At3g50820), PsbP1 (At1g06680), PsbP2 (At2g30790), PsbQ1 (At4g21280), PsbQ2 (At4g05180) and PsbR (At1g79040). Using Arabidopsis insertion mutant lines, we show that PsbP1, but not PsbP2, is essential for photoautotrophic growth, whereas plants lacking both forms of PsbQ and/or PsbR show normal growth rates. Complete elimination of PsbQ has a minor effect on PSII function, but plants lacking PsbR or both PsbR and PsbQ are characterized by more pronounced defects in PSII activity. Gene expression and immunoblot analyses indicate that accumulation of each of these proteins is highly dependent on the presence of the others, and is controlled at the post-transcriptional level, whereas PsbO stability appears to be less sensitive to depletion of other subunits of the oxygen-evolving complex. In addition, comparison of levels of the PSII super-complex in wild-type and mutant leaves reveals the importance of the individual subunits of the oxygen-evolving complex for the supramolecular organization of PSII and their influence on the rate of state transitions.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Oxigênio/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Adaptação Fisiológica , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Biomassa , Fenótipo , Fosforilação , Fotossíntese , Complexo de Proteína do Fotossistema II/genética , Plantas Geneticamente Modificadas , Tilacoides/metabolismo
6.
Plants (Basel) ; 13(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38337902

RESUMO

Domesticated rice Oryza sativa L. is a major staple food worldwide, and the cereal most sensitive to salinity. It originated from the wild ancestor Oryza rufipogon Griff., which was reported to possess superior salinity tolerance. Here, we examined the morpho-physiological responses to salinity stress (80 mM NaCl for 7 days) in seedlings of an O. rufipogon accession and two Italian O. sativa genotypes, Baldo (mildly tolerant) and Vialone Nano (sensitive). Under salt treatment, O. rufipogon showed the highest percentage of plants with no to moderate stress symptoms, displaying an unchanged shoot/root biomass ratio, the highest Na+ accumulation in roots, the lowest root and leaf Na+/K+ ratio, and highest leaf relative water content, leading to a better preservation of the plant architecture, ion homeostasis, and water status. Moreover, O. rufipogon preserved the overall leaf carbon to nitrogen balance and photosynthetic apparatus integrity. Conversely, Vialone Nano showed the lowest percentage of plants surviving after treatment, and displayed a higher reduction in the growth of shoots rather than roots, with leaves compromised in water and ionic balance, negatively affecting the photosynthetic performance (lowest performance index by JIP-test) and apparatus integrity. Baldo showed intermediate salt tolerance. Being O. rufipogon interfertile with O. sativa, it resulted a good candidate for pre-breeding towards salt-tolerant lines.

7.
PLoS Biol ; 8(1): e1000288, 2010 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-20126264

RESUMO

Short-term changes in illumination elicit alterations in thylakoid protein phosphorylation and reorganization of the photosynthetic machinery. Phosphorylation of LHCII, the light-harvesting complex of photosystem II, facilitates its relocation to photosystem I and permits excitation energy redistribution between the photosystems (state transitions). The protein kinase STN7 is required for LHCII phosphorylation and state transitions in the flowering plant Arabidopsis thaliana. LHCII phosphorylation is reversible, but extensive efforts to identify the protein phosphatase(s) that dephosphorylate LHCII have been unsuccessful. Here, we show that the thylakoid-associated phosphatase TAP38 is required for LHCII dephosphorylation and for the transition from state 2 to state 1 in A. thaliana. In tap38 mutants, thylakoid electron flow is enhanced, resulting in more rapid growth under constant low-light regimes. TAP38 gene overexpression markedly decreases LHCII phosphorylation and inhibits state 1-->2 transition, thus mimicking the stn7 phenotype. Furthermore, the recombinant TAP38 protein is able, in an in vitro assay, to directly dephosphorylate LHCII. The dependence of LHCII dephosphorylation upon TAP38 dosage, together with the in vitro TAP38-mediated dephosphorylation of LHCII, suggests that TAP38 directly acts on LHCII. Although reversible phosphorylation of LHCII and state transitions are crucial for plant fitness under natural light conditions, LHCII hyperphosphorylation associated with an arrest of photosynthesis in state 2 due to inactivation of TAP38 improves photosynthetic performance and plant growth under state 2-favoring light conditions.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Transporte de Elétrons/fisiologia , Complexos de Proteínas Captadores de Luz/metabolismo , Fosfoproteínas Fosfatases/fisiologia , Tilacoides/metabolismo , Sequência de Aminoácidos , Arabidopsis/enzimologia , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Luz , Dados de Sequência Molecular , Fosfoproteínas Fosfatases/química , Fosfoproteínas Fosfatases/genética , Fosforilação , Fotossíntese , Alinhamento de Sequência
8.
Nat Commun ; 14(1): 3023, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37230969

RESUMO

Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is the major catalyst in the conversion of carbon dioxide into organic compounds in photosynthetic organisms. However, its activity is impaired by binding of inhibitory sugars such as xylulose-1,5-bisphosphate (XuBP), which must be detached from the active sites by Rubisco activase. Here, we show that loss of two phosphatases in Arabidopsis thaliana has detrimental effects on plant growth and photosynthesis and that this effect could be reversed by introducing the XuBP phosphatase from Rhodobacter sphaeroides. Biochemical analyses revealed that the plant enzymes specifically dephosphorylate XuBP, thus allowing xylulose-5-phosphate to enter the Calvin-Benson-Bassham cycle. Our findings demonstrate the physiological importance of an ancient metabolite damage-repair system in degradation of by-products of Rubisco, and will impact efforts to optimize carbon fixation in photosynthetic organisms.


Assuntos
Fotossíntese , Ribulose-Bifosfato Carboxilase , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo , Fotossíntese/fisiologia , Plantas/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Dióxido de Carbono/metabolismo
9.
Biochim Biophys Acta Bioenerg ; 1862(12): 148482, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34418359

RESUMO

It is well known that plant responses to stress involve different events occurring at different places of the cell/leaf and at different time scales in relation with the plant development. In fact, the organelles proteomes include a wide range of proteins that could include a wide range of proteins showing a considerable change in cellular functions and metabolism process. On this basis, a comparative proteomics analysis and fluorescence induction measurements were performed to investigate the photosynthetic performance and the relative thylakoid proteome variation in Eutrema salsugineum cultivated under salt stress (200 mM NaCl), water deficit stress (PEG) and combined treatment (PEG + NaCl) as a hyperosmotic stress. The obtained results showed a significant decrease of plant growth under drought stress conditions, with the appearance of some toxicity symptoms, especially in plants subjected to combined treatment. Application of salt or water stress alone showed no apparent change in the chlorophyll a fluorescence transients, primary photochemistry (fluorescence kinetics of the O-J phase), the PQ pool state (J-I phase changes), (Fv/Fm) and (Fk/Fj) ratios. However, a considerable decrease of all these parameters was observed under severe osmotic stress (PEG + NaCl). The thylakoid proteome analysis revealed 58 proteins showing a significant variation in their abundance between treatments (up or down regulation). The combined treatment (PEG + NaCl) induced a decrease in the expression of the whole PSII core subunit (D1, D2, CP43, CP47, PsbE and PsbH), whereas the OEC subunits proteins remained constant. An increase in the amount of PsaD, PsaE, PsaF, PsaH, PsaK and PsaN was detected under drought stress (PEG5%). No significant change in the accumulation of Cyt b6 and Cyt f was observed. Some regulated proteins involved in cellular redox homeostasis were detected (glutamine synthetase, phosphoglycerate kinase, transketolase), and showed a significant decrease under the combined treatment. Some oxidative stress related proteins were significantly up-regulated under salt or drought stress and could play a crucial role in the PSI photoprotection and the control of ROS production level.


Assuntos
Secas , Proteoma , Salinidade , Tilacoides
10.
Biochim Biophys Acta Bioenerg ; 1862(5): 148383, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33513364

RESUMO

Drought is an abiotic scourge, one of the major environmental stress factors that adversely affect plant growth and photosynthesis machinery through a disruption of cell organelles, arrangement thylakoid membranes and the electron transport chain. Herein, we probed the effect of drought stress on photosynthetic performance of Chenopodium quinoa Willd. Beforehand, plants were subjected to water deficit (as 15% Field Capacity, FC) for one (D-1W) or two weeks (D-2W), and were then re-watered at 95% FC for 2 weeks. Light and electron microscopy analysis of leaves showed no apparent changes in mesophyll cell organization and chloroplast ultrastructure after one week of drought stress, while a swelling of thylakoids and starch accumulation were observed after the prolonged drought (D-2W). The latter induced a decrease in both PSI and PSII quantum yields which was accompanied by an increase in F0 (minimum fluorescence) and a decline in Fm (maximum fluorescence). Drought stress influenced the fluorescence transients, where the major changes at the OJIP prompt FI level were detected in the OJ and IP phases. Prolonged drought induced a decrease in chl a fluorescence at IP phase which was readjusted and established back after re-watering and even more an increase was observed after 2 weeks of recovery. The maximum quantum yield of primary photochemistry (φPo) was unaffected by the different drought stress regimes. Drought induced an increase in the ABS/RC and DI0/RC ratios which was concurrent to a stable φPo (maximum quantum yield of PSII primary photochemistry). A substantial decrease in PI(ABS) was detected especially, during severe drought stress (D-2W) suggesting a drop in the PSII efficiency and the level of electron transport through the plastoquinone pool (PQ pool) towards oxidized PSI RCs (P700+). The immunoblot analysis of the main PSII proteins revealed considerable changes in the D1, D2, CP47, OEC, PsbQ and LHCII proteins under drought. These changes depend on the stress duration and recovery period. The main message of this investigation is the elevated recovery capacities of PSII and PSI photochemical activities after re-watering.


Assuntos
Chenopodium quinoa/fisiologia , Cloroplastos/metabolismo , Secas , Fotossíntese , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Estresse Fisiológico , Transporte de Elétrons , Recuperação de Função Fisiológica
11.
Ecotoxicol Environ Saf ; 73(8): 1988-97, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20884049

RESUMO

The site around ACNA factory (Northern Italy) is characterized by multi-metal contamination, therefore it can be considered as a source of autochthonous plants able to tolerate or accumulate heavy metals (HMs). The hill A5, a waste dump of the chemical factory, was chosen as the study area, in order to assess the metal accumulation ability of the vegetation growing under HM stress. The plant species, biodiversity and health were related to the concentration of HMs in four areas of the hill A5, and to the metal accumulation in shoots and roots. Uptake of HMs occurred at different extent in the various plant species and differed according to the considered organ and metal. Polygonum aviculare hyperaccumulated Hg in the shoot suggesting its possible exploitation in phytoextraction. A number of species, that can be useful in phytoremediation plans, accumulated simultaneously more than two heavy metals both in the shoot and in the root.


Assuntos
Resíduos Industriais , Metais Pesados/toxicidade , Polygonum/efeitos dos fármacos , Poluentes do Solo/toxicidade , Biodegradação Ambiental/efeitos dos fármacos , Itália , Metais Pesados/metabolismo , Raízes de Plantas/classificação , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/classificação , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Polygonum/classificação , Polygonum/crescimento & desenvolvimento , Polygonum/metabolismo , Estações do Ano , Poluentes do Solo/química , Poluentes do Solo/metabolismo , Especificidade da Espécie
12.
Sci Rep ; 10(1): 6770, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32317747

RESUMO

Although light is essential for photosynthesis, when in excess, it may damage the photosynthetic apparatus, leading to a phenomenon known as photoinhibition. Photoinhibition was thought as a light-induced damage to photosystem II; however, it is now clear that even photosystem I may become very vulnerable to light. One main characteristic of light induced damage to photosystem II (PSII) is the increased turnover of the reaction center protein, D1: when rate of degradation exceeds the rate of synthesis, loss of PSII activity is observed. With respect to photosystem I (PSI), an excess of electrons, instead of an excess of light, may be very dangerous. Plants possess a number of mechanisms able to prevent, or limit, such damages by safe thermal dissipation of light energy (non-photochemical quenching, NPQ), slowing-down of electron transfer through the intersystem transport chain (photosynthesis-control, PSC) in co-operation with the Proton Gradient Regulation (PGR) proteins, PGR5 and PGRL1, collectively called as short-term photoprotection mechanisms, and the redistribution of light between photosystems, called state transitions (responsible of fluorescence quenching at PSII, qT), is superimposed to these short term photoprotective mechanisms. In this manuscript we have generated a number of higher order mutants by crossing genotypes carrying defects in each of the short-term photoprotection mechanisms, with the final aim to obtain a direct comparison of their role and efficiency in photoprotection. We found that mutants carrying a defect in the ΔpH-dependent photosynthesis-control are characterized by photoinhibition of both photosystems, irrespectively of whether PSBS-dependent NPQ or state transitions defects were present or not in the same individual, demonstrating the primary role of PSC in photoprotection. Moreover, mutants with a limited capability to develop a strong PSBS-dependent NPQ, were characterized by a high turnover of the D1 protein and high values of Y(NO), which might reflect energy quenching processes occurring within the PSII reaction center.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Membrana/genética , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Complexo de Proteína do Fotossistema I/genética , Complexo de Proteína do Fotossistema II/genética , Arabidopsis/genética , Arabidopsis/fisiologia , Genótipo , Concentração de Íons de Hidrogênio , Luz , Fotossíntese/genética , Fotossíntese/efeitos da radiação , Complexo de Proteína do Fotossistema I/efeitos da radiação , Complexo de Proteína do Fotossistema II/efeitos da radiação
13.
Ann Bot ; 103(3): 505-15, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19033288

RESUMO

BACKGROUND AND AIMS: Photosystem II of oxygenic organisms is a multi-subunit protein complex made up of at least 20 subunits and requires Ca(2+) and Cl(-) as essential co-factors. While most subunits form the catalytic core responsible for water oxidation, PsbO, PsbP and PsbQ form an extrinsic domain exposed to the luminal side of the membrane. In vitro studies have shown that these subunits have a role in modulating the function of Cl(-) and Ca(2+), but their role(s) in vivo remains to be elucidated, as the relationships between ion concentrations and extrinsic polypeptides are not clear. With the aim of understanding these relationships, the photosynthetic apparatus of the extreme halophyte Salicornia veneta has been compared with that of spinach. Compared to glycophytes, halophytes have a different ionic composition, which could be expected to modulate the role of extrinsic polypeptides. METHODS: Structure and function of in vivo and in vitro PSII in S. veneta were investigated and compared to spinach. Light and electron microscopy, oxygen evolution, gel electrophoresis, immunoblotting, DNA sequencing, RT-PCR and time-resolved chlorophyll fluorescence were used. KEY RESULTS: Thylakoids of S. veneta did not contain PsbQ protein and its mRNA was absent. When compared to spinach, PsbP was partly depleted (30 %), as was its mRNA. All other thylakoid subunits were present in similar amounts in both species. PSII electron transfer was not affected. Fluorescence was strongly quenched upon irradiation of plants with high light, and relaxed only after prolonged dark incubation. Quenching of fluorescence was not linked to degradation of D1 protein. CONCLUSIONS: In S. veneta the PsbQ protein is not necessary for photosynthesis in vivo. As the amount of PsbP is sub-stoichiometric with other PSII subunits, this protein too is largely dispensable from a catalytic standpoint. One possibility is that PsbP acts as an assembly factor for PSII.


Assuntos
Chenopodiaceae/metabolismo , Oxigênio/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Proteínas de Plantas/metabolismo , Plantas Tolerantes a Sal/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Chenopodiaceae/citologia , Chenopodiaceae/genética , Chenopodiaceae/ultraestrutura , Clorofila/metabolismo , Sequência Conservada , Transporte de Elétrons/efeitos da radiação , Fluorescência , Genes de Plantas , Cinética , Dados de Sequência Molecular , Oxirredução/efeitos da radiação , Peptídeos/metabolismo , Fotossíntese/efeitos da radiação , Proteínas de Plantas/química , Proteínas de Plantas/genética , Caules de Planta/citologia , Caules de Planta/metabolismo , Caules de Planta/efeitos da radiação , Subunidades Proteicas/metabolismo , Plantas Tolerantes a Sal/citologia , Plantas Tolerantes a Sal/genética , Plantas Tolerantes a Sal/ultraestrutura , Tilacoides/efeitos da radiação , Tilacoides/ultraestrutura
14.
Biochim Biophys Acta Bioenerg ; 1859(12): 1274-1287, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30342039

RESUMO

Plants show complex responses to abiotic stress while, the effect of the stress combinations can be different to those seen when each stress is applied individually. Here, we report on the effects of salt and/or cadmium on photosynthetic apparatus of Thellungiella salsuginea. Our results showed a considerable reduction of plant growth with some symptoms of toxicity, especially with cadmium treatment. The structural integrity of both photosystems (PSI and PSII) was mostly maintained under salt stress. Cadmium induced a considerable decrease of both PSI and PSII quantum yields and the electron transport rate ETR(I) and ETR(II) paralleled by an increase of non-photochemical quenching (NPQ). In addition, cadmium alone affects the rate of primary photochemistry by an increase of fluorescence at O-J phase and also the photo-electrochemical quenching at J-I phase. A positive L-band appeared with (Cd) treatment as an indicator of lower PSII connectivity, and a positive K-band reflecting the imbalance in number of electrons at donor and acceptor side. In continuity to our previous studies which showed that NaCl supply reduced Cd2+ uptake and limited its accumulation in shoot of divers halophyte species, here as a consequence, we demonstrated the NaCl-induced enhancement effect of Cd2+ toxicity on the PSII activity by maintaining the photosynthetic electron transport chain as evidenced by the differences in ψO, φEo, ABS/RC and TR0/RC and by improvement of performance index PI(ABS), especially after short time of treatment. A significant decrease of LHCII, D1 and CP47 amounts was detected under (Cd) treatment. However, NaCl supply alleviates the Cd2+ effect on protein abundance including LHCII and PSII core complex (D1 and CP47).


Assuntos
Brassicaceae/fisiologia , Cádmio/farmacologia , Fotossíntese/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Biomassa , Brassicaceae/efeitos dos fármacos , Brassicaceae/crescimento & desenvolvimento , Clorofila/metabolismo , Transporte de Elétrons , Fluorescência , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Tilacoides/metabolismo
15.
J Photochem Photobiol B ; 183: 275-287, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29751261

RESUMO

Salinity is one of the most important abiotic stress affecting plant growth and productivity worldwide. Photosynthesis, together with cell growth, is among the primary process affected by salinity. Here, we report the effects of salt stress on photosynthesis in the model halophyte Thellungiella salsuginea. Plants were grown in hydroponic system and then treated for 2 weeks with different NaCl concentrations (0, 100, 200 and 400 mM). Leaf analysis using both photonic and transmission electron microscopes showed some changes in mesophyll cell organization, including shape and dimension. Under high NaCl concentration (400 mM) a swelling of thylakoids and starch accumulation was also observed. The obtained results also showed a change in the photosynthetic efficiency of both photosystems (PSI and PSII), depending on both NaCl concentrations and duration of the stress treatment. Under moderate salinity (100 and 200 mM NaCl) no significant variation was observed in PSI and PSII yield parameters. Chlorophyll a fluorescence transient showed some variations in OJ, JI and IP phases under salt stress depending also on NaCl levels and the duration of stress. Under high salinity PSII donor side was affected as well as quantum yield of PSI which also showed a donor side limitation. A significant decrease on quantum yields Y(I) and Y(II) under high salt treatment (400 mM NaCl) for prolonged period of time (15 days) was observed. The decrease of these parameters was quantitatively compensated by a corresponding increase of energy thermal dissipation Y(NPQ) in photosystem II and a increase in the Y(ND) in PSI. Analysis of derived parameters from the OJIP transient curve revealed that ABS/RC decreased under NaCl treatment by reason of the increase in size of antenna of active reaction centers. An increase in the performance index PI(ABS), a slight decrease in the rate of DIO/RC, TRO/RC and the level of electron transport per PSII RC (ETO/RC) were observed during the first days of salt stress treatment reflecting a high PSII efficiency.


Assuntos
Cloroplastos/ultraestrutura , Cloreto de Sódio/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Brassicaceae/efeitos dos fármacos , Brassicaceae/metabolismo , Clorofila/metabolismo , Clorofila A , Cloroplastos/efeitos dos fármacos , Microscopia Eletrônica de Transmissão , Fotossíntese/efeitos dos fármacos , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Espectrometria de Fluorescência , Amido/metabolismo , Tilacoides/metabolismo
16.
Plant Physiol Biochem ; 132: 356-362, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30261469

RESUMO

Salicornia veneta (Pignatti et Lausi) is an extreme halophyte living in salt marsh where NaCl concentration may be as high as 1 M. Here we report on the isolation and characterization of a PSII preparation obtained by Triton X-100 solubilisation of the thylakoid membrane. By a combination of gel electrophoresis, immunoblotting and mass spectrometry, the depletion of a number of PSII proteins such as PsbQ, PsbM and PsbT was highlighted. Moreover, the requirement of Cl- and Ca2+ for optimal oxygen evolution was determined, showing that in absence of PsbQ a higher level of these ions are required. At high Cl- concentrations, oxygen evolution was inhibited in the same way in Salicornia veneta and spinach. Reconstitution of Salicornia veneta PSII preparation with partially purified spinach PsbP and PsbQ restored oxygen evolution activity at low Cl- and Ca2+ concentrations. Adaptation to high salt makes several PSII proteins dispensable.


Assuntos
Chenopodiaceae/metabolismo , Complexo de Proteína do Fotossistema II/isolamento & purificação , Complexo de Proteína do Fotossistema II/metabolismo , Plantas Tolerantes a Sal/metabolismo , Tilacoides/metabolismo , Cálcio/metabolismo , Cloretos/metabolismo , Oxigênio/análise , Proteínas de Plantas/metabolismo , Spinacia oleracea/metabolismo
17.
J Photochem Photobiol B ; 84(1): 70-8, 2006 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-16540337

RESUMO

The effects of cadmium (from 7.5 to 75 microM) on chloroplasts of rice were studied at the structural and biochemical level. Loss of pigments, reduction of thylakoids and decrease in oxygen evolution and Fv/Fm ratio occur in leaves following cadmium treatment. However, the amount of photosystem II reaction center proteins and that of its light harvesting complex is not affected, indicating that cadmium does not adversely influence the structural organization of this photosystem. In thylakoids isolated from cadmium-treated plants a loss in the capability to reduce 2,6-dichlorophenolindophenol is observed, which is partially restored if diphenylcarbazide is used as an electron donor, indicating that cadmium affects water splitting activity. In thylakoids isolated from control plants and treated with cadmium, diphenylcarbazide preserves most of the photosystem II activity lost after incubation with cadmium; most of the S(2) multiline electron paramagnetic resonance signal from the manganese cluster is lost, whereas the TyrD(+) and other signals are retained. Light-induced photosystem II damage, in vitro, is promoted by Cd-treatment as deduced from the mobility shift of the D1 protein observed by immunoblot.


Assuntos
Cádmio/farmacologia , Luz , Oryza/química , Complexo de Proteína do Fotossistema II/ultraestrutura , Tilacoides/química , Cloroplastos/efeitos dos fármacos , Cloroplastos/ultraestrutura , Difenilcarbazida/farmacologia , Relação Dose-Resposta a Droga , Espectroscopia de Ressonância de Spin Eletrônica , Ensaio de Desvio de Mobilidade Eletroforética , Microscopia Eletrônica de Transmissão , Oryza/efeitos dos fármacos , Oxigênio/química , Complexo de Proteína do Fotossistema II/efeitos dos fármacos , Complexo de Proteína do Fotossistema II/efeitos da radiação , Folhas de Planta/ultraestrutura , Tilacoides/efeitos dos fármacos
18.
Plant Signal Behav ; 11(4): e1165382, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27018523

RESUMO

Regulation of photosynthetic electron transport provides efficient performance of oxygenic photosynthesis in plants. During the last 15 years, the molecular bases of various photosynthesis short-term regulatory processes have been elucidated, however the wild type-like phenotypes of mutants lacking of State Transitions, Non Photochemical Quenching, or Cyclic Electron Transport, when grown under constant light conditions, have also raised doubts about the acclimatory significance of these short-regulatory mechanisms on plant performance. Interestingly, recent studies performed by growing wild type and mutant plants under field conditions revealed a prominent role of State Transitions and Non Photochemical Quenching on plant fitness, with almost no effect on vegetative plant growth. Conversely, the analysis of plants lacking the regulation of electron transport by the cytochrome b6f complex, also known as Photosynthesis Control, revealed the fundamental role of this regulatory mechanism in the survival of young, developing seedlings under fluctuating light conditions.


Assuntos
Fotossíntese/fisiologia , Plantas/metabolismo , Complexo Citocromos b6f/metabolismo , Transporte de Elétrons , Modelos Biológicos , Tilacoides/metabolismo
19.
Mol Plant ; 9(2): 271-288, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26687812

RESUMO

Plants need tight regulation of photosynthetic electron transport for survival and growth under environmental and metabolic conditions. For this purpose, the linear electron transport (LET) pathway is supplemented by a number of alternative electron transfer pathways and valves. In Arabidopsis, cyclic electron transport (CET) around photosystem I (PSI), which recycles electrons from ferrodoxin to plastoquinone, is the most investigated alternative route. However, the interdependence of LET and CET and the relative importance of CET remain unclear, largely due to the difficulties in precise assessment of the contribution of CET in the presence of LET, which dominates electron flow under physiological conditions. We therefore generated Arabidopsis mutants with a minimal water-splitting activity, and thus a low rate of LET, by combining knockout mutations in PsbO1, PsbP2, PsbQ1, PsbQ2, and PsbR loci. The resulting Δ5 mutant is viable, although mature leaves contain only ∼ 20% of wild-type naturally less abundant PsbO2 protein. Δ5 plants compensate for the reduction in LET by increasing the rate of CET, and inducing a strong non-photochemical quenching (NPQ) response during dark-to-light transitions. To identify the molecular origin of such a high-capacity CET, we constructed three sextuple mutants lacking the qE component of NPQ (Δ5 npq4-1), NDH-mediated CET (Δ5 crr4-3), or PGR5-PGRL1-mediated CET (Δ5 pgr5). Their analysis revealed that PGR5-PGRL1-mediated CET plays a major role in ΔpH formation and induction of NPQ in C3 plants. Moreover, while pgr5 dies at the seedling stage under fluctuating light conditions, Δ5 pgr5 plants are able to survive, which underlines the importance of PGR5 in modulating the intersystem electron transfer.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Membrana/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Arabidopsis/química , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Transporte de Elétrons , Cinética , Luz , Proteínas de Membrana/genética , Fotossíntese/efeitos da radiação , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Complexo de Proteína do Fotossistema I/genética , Complexo de Proteína do Fotossistema I/metabolismo
20.
J Photochem Photobiol B ; 73(3): 159-66, 2004 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-14975404

RESUMO

Thylakoid membrane dismantling and Lhcb and RbcS nuclear gene expression have been analysed in leaves of wheat plants grown in high fluence rate light and deprived of photoprotective carotenoids by treatments with the two bleaching herbicides, either norflurazon or amitrole. The Lhcb transcript was not detectable in cells of norflurazon-supplied leaves, having chloroplasts totally devoid of both inner membranes and pigments. In contrast, a substantial amount of Lhcb mRNA could be found in cells of amitrole-treated leaves, whose severely damaged organelles still contained few strikingly altered and photosynthetically unfunctional thylakoids, as well as chlorophyll traces. A possible relationship between chlorophyll synthesis and Lhcb expression, with the transcript level depending on the rate of pigment production in photodamaged chloroplasts is discussed. Also the RbcS expression was linked to the chloroplast membrane photodamage. However, a detectable level of transcript was still produced in norflurazon-treated cells, despite complete thylakoid demolition. Thus, the wheat cell behaviour had to be placed between that of species, such as maize, in which the RbcS expression is broken off in these conditions, and that of species, such as pea, in which it is slightly lowered. Interestingly, the dramatically photodamaged chloroplasts still maintained the ability to synthesize proteins and this allowed SSU and LSU Rubisco subunits to be found in the organelles of both norflurazon- and amitrole-treated plants.


Assuntos
Regulação da Expressão Gênica de Plantas/fisiologia , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Proteínas de Plantas/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Tilacoides/fisiologia , Tilacoides/efeitos da radiação , Triticum/fisiologia , Triticum/efeitos da radiação , Amitrol (Herbicida)/farmacologia , Cloroplastos/efeitos dos fármacos , Cloroplastos/fisiologia , Cloroplastos/efeitos da radiação , Cloroplastos/ultraestrutura , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Luz , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Folhas de Planta/ultraestrutura , Proteínas de Plantas/genética , Piridazinas/farmacologia , Tolerância a Radiação/efeitos dos fármacos , Ribulose-Bifosfato Carboxilase/genética , Tilacoides/efeitos dos fármacos , Tilacoides/ultraestrutura , Triticum/efeitos dos fármacos , Triticum/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA