Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Microbiol ; 9: 2093, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30214441

RESUMO

The use of plant-associated bacteria has received many scientific and economic attention as an effective and alternative method to reduce the chemical pesticides use in agriculture. The genus Burkholderia includes at least 90 species including pathogenic strains, plant pathogens, as well as plant beneficial species as those related to Paraburkholderia, which has been reported to be associated with plants and exerts a positive effect on plant growth and fitness. Paraburkholderia phytofirmans PsJN, a beneficial endophyte able to colonize a wide range of plants, is an established model for plant-associated endophytic bacteria. Indeed, in addition to its plant growth promoting ability, it can also induce plant resistance against biotic as well as abiotic stresses. Here, we summarized an inventory of knowledge on PsJN-plant interaction, from the perception to the resistance mechanisms induced in the plant by a way of the atypical colonization mode of this endophyte. We also have carried out an extensive genome analysis to identify all gene clusters which contribute to the adaptive mechanisms under different environments and partly explaining the high ecological competence of P. phytofirmans PsJN.

2.
Front Plant Sci ; 9: 1010, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30050554

RESUMO

Abiotic factors inducing osmotic stress can affect plant immunity and resistance against pathogen attack. Although a number of studies have characterized grapevine responses to various forms of biotic and abiotic stresses, the relationships between osmotic stress response and susceptibility of mature berries to Botrytis cinerea still remain unknown. In this study, we investigated the effects of osmotic stress and abscisic acid (ABA) on defense responses of mature grapevine berries before and after B. cinerea infection. We focused on the possible involvement of polyamines in the interaction between osmotic stress response and susceptibility to B. cinerea. We showed that osmotic stress induced by PEG or sucrose, and exogenous ABA induce transient but low defense responses, including weak expression of PR genes and phytoalexin synthesis in mature berries. This was accompanied by an upregulation of NCED2 involved in ABA biosynthesis and a large production of free polyamines. However, osmotic stress followed by B. cinerea infection primed berries for enhanced accumulation of polyamines, but slowed down the defense responses and increased susceptibility to the pathogen. A weak increase of diamine- and polyamine-oxidase activities was also recorded in stressed berries, but declined after pathogen infection. The pretreatment of stressed berries with appropriate inhibitors of diamine- and polyamine-oxidases further increased polyamine level and greatly lowered defense responses, leading to higher susceptibility to B. cinerea. These results suggest that increased polyamine titer through low activation of their oxidative degradation in grape berries may contribute at least in part to the weakening of defense responses and subsequent disease susceptibility.

3.
Front Plant Sci ; 7: 1236, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27602036

RESUMO

Plant innate immunity serves as a surveillance system by providing the first line of powerful weapons to fight against pathogen attacks. Beneficial microorganisms and Microbial-Associated Molecular Patterns might act as signals to trigger this immunity. Burkholderia phytofirmans PsJN, a highly efficient plant beneficial endophytic bacterium, promotes growth in a wide variety of plants including grapevine. Further, the bacterium induces plant resistance against abiotic and biotic stresses. However, no study has deciphered triggered-mechanisms during the tripartite interaction between grapevine, B. phytofirmans PsJN and Botrytis cinerea. Herein, we showed that in contrast with classical rhizobacteria, which are restricted in the root system and act through ISR, B. phytofirmans PsJN is able to migrate until aerial part and forms at leaves surface a biofilm around B. cinerea mycelium to restrict the pathogen. Nevertheless, considering the endophytic level of PsJN in leaves, the plant protection efficacy of B. phytofirmans PsJN could not be explained solely by its direct antifungal effect. Deeper investigations showed a callose deposition, H2O2 production and primed expression of PR1, PR2, PR5, and JAZ only in bacterized-plantlets after pathogen challenge. The presence of PsJN modulated changes in leaf carbohydrate metabolism including gene expression, sugar levels, and chlorophyll fluorescence imaging after Botrytis challenge. Our findings indicated that protection induced by B. phytofirmans PsJN was multifaceted and relied on a direct antifungal effect, priming of defense mechanisms as well as the mobilization of carbon sources in grapevine leaf tissues.

4.
Front Plant Sci ; 6: 810, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26483823

RESUMO

Several plant growth-promoting rhizobacteria (PGPR) are known to improve plant tolerance to multiple stresses, including low temperatures. However, mechanisms underlying this protection are still poorly understood. The aim of this study was to evaluate the role of the endophytic PGPR, Burkholderia phytofirmans strain PsJN (Bp PsJN), on Arabidopsis thaliana cold tolerance using photosynthesis parameters as physiological markers. Under standard conditions, our results indicated that Bp PsJN inoculation led to growth promotion of Arabidopsis plants without significant modification on photosynthesis parameters and chloroplast organization. However, bacterial colonization induced a cell wall strengthening in the mesophyll. Impact of inoculation modes (either on seeds or by soil irrigation) and their effects overnight at 0, -1, or -3°C, were investigated by following photosystem II (PSII) activity and gas exchanges. Following low temperatures stress, a decrease of photosynthesis parameters was observed. In addition, during three consecutive nights or days at -1°C, PSII activity was monitored. Pigment contents, RuBisCO protein abundance, expression of several genes including RbcS, RbcL, CBF1, CBF2, CBF3, ICE1, COR15a, and COR78 were evaluated at the end of exposure. To assess the impact of the bacteria on cell ultrastructure under low temperatures, microscopic observations were achieved. Results indicated that freezing treatment induced significant changes in PSII activity as early as the first cold day, whereas the same impact on PSII activity was observed only during the third cold night. The significant effects conferred by PsJN were differential accumulation of pigments, and reduced expression of RbcL and COR78. Microscopical observations showed an alteration/disorganization in A. thaliana leaf mesophyll cells independently of the freezing treatments. The presence of bacteria during the three successive nights or days did not significantly improved A. thaliana responses but prevented the plasmalemma disruption under freezing stress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA