Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Am J Physiol Endocrinol Metab ; 321(1): E90-E104, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34029162

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is a spectrum of disorders ranging from hepatic steatosis [excessive accumulation of triglycerides (TG)] to nonalcoholic steatohepatitis, which can progress to cirrhosis and hepatocellular carcinoma. The molecular pathogenesis of steatosis and progression to more severe NAFLD remains unclear. Obesity and aging, two principal risk factors for NAFLD, are associated with a hyperadrenergic state. ß-Adrenergic responsiveness in liver increases in animal models of obesity and aging, and in both is linked to increased hepatic expression of ß2-adrenergic receptors (ß2-ARs). We previously showed that in aging rodents intracellular signaling from elevated hepatic levels of ß2-ARs may contribute to liver steatosis. In this study we demonstrate that injection of formoterol, a highly selective ß2-AR agonist, to mice acutely results in hepatic TG accumulation. Further, we have sought to define the intrahepatic mechanisms underlying ß2-AR mediated steatosis by investigating changes in hepatic expression and cellular localization of enzymes, transcription factors, and coactivators involved in processes of lipid accrual and disposition-and also functional aspects thereof-in livers of formoterol-treated animals. Our results suggest that ß2-AR activation by formoterol leads to increased hepatic TG synthesis and de novo lipogenesis, increased but incomplete ß-oxidation of fatty acids with accumulation of potentially toxic long-chain acylcarnitine intermediates, and reduced TG secretion-all previously invoked as contributors to fatty liver disease. Experiments are ongoing to determine whether sustained activation of hepatic ß2-AR signaling by formoterol might be utilized to model fatty liver changes occurring in hyperadrenergic states of obesity and aging, and thereby identify novel molecular targets for the prevention or treatment of NAFLD.NEW & NOTEWORTHY Results of our study suggest that ß2-adrenergic receptor (ß2-AR) activation by agonist formoterol leads to increased hepatic TG synthesis and de novo lipogenesis, incomplete ß-oxidation of fatty acids with accumulation of long-chain acylcarnitine intermediates, and reduced TG secretion. These findings may, for the first time, implicate a role for ß2-AR responsive dysregulation of hepatic lipid metabolism in the pathogenetic processes underlying NAFLD in hyperadrenergic states such as obesity and aging.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Fígado Gorduroso/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Receptores Adrenérgicos beta 2/fisiologia , Animais , Carnitina/análogos & derivados , Carnitina/análise , Fumarato de Formoterol/farmacologia , Expressão Gênica/efeitos dos fármacos , Células Estreladas do Fígado , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/fisiologia , Lipogênese/genética , Fígado/química , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Fosfatidato Fosfatase/análise , Triglicerídeos/biossíntese
2.
Am J Pathol ; 188(3): 768-784, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29269120

RESUMO

In vitro models for the investigation of renal vascular development are limited. We previously showed that isolated metanephric mesenchymal (MM) and ureteric bud (UB) cells grown in three-dimensional (3D) matrices formed organoids that consisted of primitive vascular structures surrounding a polarized epithelium. Here, we examined the potential of two principal effectors of vasculogenesis, vascular endothelial growth factor A (VEGF-A), and platelet-derived growth factor B chain (PDGF-BB), to stimulate MM cell differentiation. The results showed that MM cells possess angioblast characteristics by expressing phenotypic markers for endothelial and mesenchymal cells. UB cells synthesize VEGF-A and PDGF-BB proteins and RNA, whereas the MM cells express the respective cognate receptors, supporting their role in directional induction of vasculogenesis. VEGF-A stimulated proliferation of MM cells in monolayer and in 3D sponges but did not affect MM cell migration, organization, or vasculogenesis. However, PDGF-BB stimulated MM cell proliferation, migration, and vasculogenesis in monolayer and organization of the cells into primitive capillary-like assemblies in 3D sea sponge scaffolds in vitro. A role for PDGF-BB in vasculogenesis in the 3D MM/UB co-culture system was validated by direct interference with PDGF-BB or PDGF receptor-ß cell interactions to implicate PDGF-BB as a primary effector of MM cell vasculogenesis. Thus, MM cells resemble early renal angioblasts that may provide an ideal platform for the investigation of renal vasculogenesis in vitro.


Assuntos
Células-Tronco Mesenquimais/citologia , Neovascularização Fisiológica/fisiologia , Animais , Becaplermina/farmacologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Neovascularização Fisiológica/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/farmacologia
3.
Am J Physiol Regul Integr Comp Physiol ; 314(4): R574-R583, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29212811

RESUMO

Increased ß-adrenergic receptor (ß-AR)-mediated activation of adenylyl cyclase (AC) in rat liver during aging has been linked to age-related increases in hepatic glucose output and hepatosteatosis. In this study, we investigated the expression of ß-ARs, individual receptor subtypes, and G protein-coupled receptor (GPCR) regulatory proteins in livers from aging rats. Radioligand-binding studies demonstrated that ß-AR density increased by greater than threefold in hepatocyte membranes from senescent (24-mo-old) compared with young adult (7-mo-old) rats and that this phenomenon was blocked by food restriction, which is known to retard aging processes in rodents. Competition-binding studies revealed a mixed population of ß1- and ß2-AR subtypes in liver membranes over the adult life span, with a trend for greater ß2-AR density with age. Expression of both ß-AR subtype mRNAs in rat liver increased with age, whereas ß2- but not ß1-AR protein levels declined in livers of old animals. Immunoreactive ß2- but not ß1-ARs were preferentially distributed in pericentral hepatic regions. Levels of GRK2/3 and ß-arrestin 2 proteins, which are involved in downregulation of agonist-activated GPCRs, including ß-ARs, increased during aging. Insofar as sympathetic tone increases with age, our findings suggest that, despite enhanced agonist-mediated downregulation of hepatic ß-ARs preferentially affecting the ß2-AR subtype, increased generation of both receptor subtypes during aging augments the pool of plasma membrane-bound ß-ARs coupled to AC in hepatocytes. This study thus identifies one or both ß-AR subtypes as possible therapeutic targets involved in aberrant hepatic processes of glucose and lipid metabolism during aging.


Assuntos
Envelhecimento/metabolismo , Membrana Celular/metabolismo , Metabolismo Energético , Hepatócitos/metabolismo , Fígado/metabolismo , Receptores Adrenérgicos beta 1/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Fatores Etários , Envelhecimento/genética , Animais , Restrição Calórica , Metabolismo Energético/genética , Quinase 2 de Receptor Acoplado a Proteína G/genética , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Quinase 3 de Receptor Acoplado a Proteína G/genética , Quinase 3 de Receptor Acoplado a Proteína G/metabolismo , Regulação da Expressão Gênica , Glucose/metabolismo , Ligantes , Metabolismo dos Lipídeos , Fígado/fisiopatologia , Masculino , Ratos Endogâmicos F344 , Receptores Adrenérgicos beta 1/genética , Receptores Adrenérgicos beta 2/genética , beta-Arrestina 2/genética , beta-Arrestina 2/metabolismo
4.
FASEB J ; 30(9): 3026-38, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27221979

RESUMO

Systemic fibrosis can be induced in humans with gadolinium-based contrast, and cumulative doses correlate with severity. Bone marrow-derived fibrocytes accumulate in the dermis. Whether target organs liberate chemokines to recruit these fibrocytes or whether fibrocytes are stimulated to home to the affected tissue is unknown. Transgenic (tagged) donor rats were treated with gadolinium-based contrast. Bone marrow was obtained from diseased animals and age-matched controls. Rats with subtotal nephrectomies were lethally irradiated and underwent salvage transplantation with either the contrast-naïve or contrast-exposed bone marrow. Groups were randomly assigned to control or contrast treatment. Contrast treatment led to dermal fibrosis, and this was exacerbated in recipients of contrast-exposed marrow. Fibronectin, C-C chemokine receptors (CCRs)2 and 7, and oxidative stress were all increased in skin from contrast-treated animals-all parameters more severe in recipients of contrast-treated animals. The respective ligands, monocyte chemoattractant protein and C-C motif ligand 19, were both elevated in skin from contrast-treated animals. Coadministration of gadolinium-based contrast and a CCR2 inhibitor reduced the severity of skin disease as well as dermal cellularity. The functional role of chemokines in the effects of gadolinium-based contrast was further confirmed in in situ coculture studies using neutralizing CCR2 antibodies. These data implicate dermal liberation of specific chemokines in the recruitment of circulating bone marrow-derived cells. The disease is augmented by bone marrow exposure to contrast, which explains why multiple exposures correlate with severity.-Drel, V. R., Tan, C., Barnes, J. L., Gorin, Y., Lee, D.-Y., Wagner, B. Centrality of bone marrow in the severity of gadolinium-based contrast-induced systemic fibrosis.


Assuntos
Medula Óssea/efeitos dos fármacos , Meios de Contraste/efeitos adversos , Gadolínio DTPA/efeitos adversos , Dermopatia Fibrosante Nefrogênica/induzido quimicamente , Animais , Animais Geneticamente Modificados , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Transplante de Medula Óssea , Meios de Contraste/administração & dosagem , Meios de Contraste/farmacologia , Feminino , Gadolínio DTPA/metabolismo , Regulação da Expressão Gênica , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Humanos , Masculino , NADPH Oxidase 4 , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Dermopatia Fibrosante Nefrogênica/patologia , Distribuição Aleatória , Ratos , Espécies Reativas de Oxigênio , Receptores CCR2/antagonistas & inibidores , Receptores de Superfície Celular/metabolismo , Pele/efeitos dos fármacos , Pele/metabolismo
5.
Am J Pathol ; 185(8): 2168-80, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26071397

RESUMO

Transforming growth factor (TGF)-ß contributes to tubulointerstitial fibrosis. We investigated the mechanism by which TGF-ß exerts its profibrotic effects and specifically the role of AMP-activated protein kinase (AMPK) in kidney tubular epithelial cells and interstitial fibroblasts. In proximal tubular epithelial cells, TGF-ß1 treatment causes a decrease in AMPK phosphorylation and activation together with increased fibronectin and α-smooth muscle actin expression and decreased in E-cadherin. TGF-ß1 causes similar changes in interstitial fibroblasts. Activation of AMPK with 5-aminoimidazole-4-carboxamide 1-ß-d-ribofuranoside, metformin, or overexpression of constitutively active AMPK markedly attenuated TGF-ß1 functions. Conversely, inhibition of AMPK with adenine 9-ß-d-arabinofuranoside or siRNA-mediated knockdown of AMPK (official name PRKAA1) mimicked the effect of TGF-ß1 and enhanced basal and TGF-ß1-induced phenotypic changes. Importantly, we found that tuberin contributed to the protective effects of AMPK and that TGF-ß1 promoted cell injury by blocking AMPK-mediated tuberin phosphorylation and activation. In the kidney cortex of TGF-ß transgenic mice, the significant decrease in AMPK phosphorylation and tuberin phosphorylation on its AMPK-dependent activating site was associated with an increase in mesenchymal markers and a decrease in E-cadherin. Collectively, the data indicate that TGF-ß exerts its profibrotic action in vitro and in vivo via inactivation of AMPK. AMPK and tuberin activation prevent tubulointerstitial injury induced by TGF-ß. Activators of AMPK provide potential therapeutic strategy to prevent kidney fibrosis and progressive kidney disease.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Túbulos Renais Proximais/metabolismo , Miofibroblastos/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Animais , Caderinas/metabolismo , Fibronectinas/metabolismo , Humanos , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/efeitos dos fármacos , Camundongos , Camundongos Knockout , Miofibroblastos/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Ribonucleosídeos/farmacologia , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo
6.
J Biol Chem ; 289(51): 35363-75, 2014 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-25339176

RESUMO

Increase in protein synthesis contributes to kidney hypertrophy and matrix protein accumulation in diabetes. We have previously shown that high glucose-induced matrix protein synthesis is associated with inactivation of glycogen synthase kinase 3ß (GSK3ß) in renal cells and in the kidneys of diabetic mice. We tested whether activation of GSK3ß by sodium nitroprusside (SNP) mitigates kidney injury in diabetes. Studies in kidney-proximal tubular epithelial cells showed that SNP abrogated high glucose-induced laminin increment by stimulating GSK3ß and inhibiting Akt, mTORC1, and events in mRNA translation regulated by mTORC1 and ERK. NONOate, an NO donor, also activated GSK3ß, indicating that NO may mediate SNP stimulation of GSK3ß. SNP administered for 3 weeks to mice with streptozotocin-induced type 1 diabetes ameliorated kidney hypertrophy, accumulation of matrix proteins, and albuminuria without changing blood glucose levels. Signaling studies showed that diabetes caused inactivation of GSK3ß by activation of Src, Pyk2, Akt, and ERK; GSK3ß inhibition activated mTORC1 and downstream events in mRNA translation in the kidney cortex. These reactions were abrogated by SNP. We conclude that activation of GSK3ß by SNP ameliorates kidney injury induced by diabetes.


Assuntos
Diabetes Mellitus Experimental/prevenção & controle , Quinase 3 da Glicogênio Sintase/metabolismo , Rim/efeitos dos fármacos , Nitroprussiato/farmacologia , Albuminúria/prevenção & controle , Animais , Linhagem Celular Transformada , Diabetes Mellitus Experimental/enzimologia , Ativação Enzimática/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Glicogênio Sintase Quinase 3 beta , Hipertrofia/prevenção & controle , Immunoblotting , Rim/enzimologia , Rim/patologia , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Laminina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos Endogâmicos C57BL , Complexos Multiproteicos/metabolismo , Doadores de Óxido Nítrico/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo
7.
Am J Physiol Renal Physiol ; 308(11): F1276-87, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25656366

RESUMO

Reactive oxygen species (ROS) generated by Nox NADPH oxidases may play a critical role in the pathogenesis of diabetic nephropathy (DN). The efficacy of the Nox1/Nox4 inhibitor GKT137831 on the manifestations of DN was studied in OVE26 mice, a model of type 1 diabetes. Starting at 4-5 mo of age, OVE26 mice were treated with GKT137831 at 10 or 40 mg/kg, once-a-day for 4 wk. At both doses, GKT137831 inhibited NADPH oxidase activity, superoxide generation, and hydrogen peroxide production in the renal cortex from diabetic mice without affecting Nox1 or Nox4 protein expression. The increased expression of fibronectin and type IV collagen was reduced in the renal cortex, including glomeruli, of diabetic mice treated with GKT137831. GKT137831 significantly reduced glomerular hypertrophy, mesangial matrix expansion, urinary albumin excretion, and podocyte loss in OVE26 mice. GKT137831 also attenuated macrophage infiltration in glomeruli and tubulointerstitium. Collectively, our data indicate that pharmacological inhibition of Nox1/4 affords broad renoprotection in mice with preexisting diabetes and established kidney disease. This study validates the relevance of targeting Nox4 and identifies GKT137831 as a promising compound for the treatment of DN in type 1 diabetes.


Assuntos
Diabetes Mellitus Tipo 1/metabolismo , Inibidores Enzimáticos/farmacologia , NADH NADPH Oxirredutases/antagonistas & inibidores , NADPH Oxidases/metabolismo , Pirazóis/farmacologia , Piridinas/farmacologia , Animais , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Rim/metabolismo , Rim/patologia , Camundongos , NADPH Oxidase 1 , NADPH Oxidase 4 , NADPH Oxidases/antagonistas & inibidores , Podócitos/efeitos dos fármacos , Podócitos/metabolismo , Pirazolonas , Piridonas , Espécies Reativas de Oxigênio/metabolismo
8.
Am J Pathol ; 184(11): 2908-21, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25193594

RESUMO

Fibrosis is at the core of the high morbidity and mortality rates associated with the complications of diabetes and obesity, including diabetic nephropathy (DN), without any US Food and Drug Administration-approved drugs with this specific target. We recently provided the first evidence that the matricellular protein CCN3 (official symbol NOV) functions in a reciprocal manner, acting on the profibrotic family member CCN2 to inhibit fibrosis in a mesangial cell model of DN. Herein, we used the BT/BR ob/ob mouse as a best model of human obesity and DN progression to determine whether recombinant human CCN3 could be used therapeutically, and the mechanisms involved. Eight weeks of thrice-weekly i.p. injections (0.604 and 6.04 µg/kg of recombinant human CCN3) beginning in early-stage DN completely blocked and/or reversed the up-regulation of mRNA expression of kidney cortex fibrosis genes (CCN2, Col1a2, TGF-ß1, and PAI-1) seen in placebo-treated diabetic mice. The treatment completely blocked glomerular fibrosis, as determined by altered mesangial expansion and deposition of laminin. Furthermore, it protected against, or reversed, podocyte loss and kidney function reduction (rise in plasma creatinine concentration); albuminuria was also greatly reduced. This study demonstrates the potential efficacy of recombinant human CCN3 treatment in DN and points to mechanisms operating at multiple levels or pathways, upstream (eg, protecting against cell injury) and downstream (eg, regulating CCN2 activity and extracellular matrix metabolism).


Assuntos
Diabetes Mellitus Experimental/patologia , Nefropatias Diabéticas/patologia , Fibrose/tratamento farmacológico , Rim/efeitos dos fármacos , Proteína Sobre-Expressa em Nefroblastoma/uso terapêutico , Animais , Diabetes Mellitus Experimental/complicações , Nefropatias Diabéticas/complicações , Fibrose/patologia , Fibrose/prevenção & controle , Rim/patologia , Masculino , Camundongos , Proteína Sobre-Expressa em Nefroblastoma/farmacologia , Obesidade/complicações , Obesidade/patologia , Resultado do Tratamento
9.
Infect Immun ; 82(8): 3098-112, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24818662

RESUMO

Malnutrition is thought to contribute to more than one-third of all childhood deaths via increased susceptibility to infection. Malnutrition is a significant risk factor for the development of visceral leishmaniasis, which results from skin inoculation of the intracellular protozoan Leishmania donovani. We previously established a murine model of childhood malnutrition and found that malnutrition decreased the lymph node barrier function and increased the early dissemination of L. donovani. In the present study, we found reduced numbers of resident dendritic cells (conventional and monocyte derived) but not migratory dermal dendritic cells in the skin-draining lymph nodes of L. donovani-infected malnourished mice. Expression of chemokines and their receptors involved in trafficking of dendritic cells and their progenitors to the lymph nodes was dysregulated. C-C chemokine receptor type 2 (CCR2) and its ligands (CCL2 and CCL7) were reduced in the lymph nodes of infected malnourished mice, as were CCR2-bearing monocytes/macrophages and monocyte-derived dendritic cells. However, CCR7 and its ligands (CCL19 and CCL21) were increased in the lymph node and CCR7 was increased in lymph node macrophages and dendritic cells. CCR2-deficient mice recapitulated the profound reduction in the number of resident (but not migratory dermal) dendritic cells in the lymph node but showed no alteration in the expression of CCL19 and CCL21. Collectively, these results suggest that the malnutrition-related reduction in the lymph node barrier to dissemination of L. donovani is related to insufficient numbers of lymph node-resident but not migratory dermal dendritic cells. This is likely driven by the altered activity of the CCR2 and CCR7 chemoattractant pathways.


Assuntos
Quimiocinas/metabolismo , Células Dendríticas/imunologia , Leishmania donovani/imunologia , Leishmaniose Visceral/complicações , Leishmaniose Visceral/imunologia , Linfonodos/citologia , Desnutrição/imunologia , Animais , Feminino , Perfilação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Receptores de Quimiocinas/biossíntese
10.
Am J Physiol Renal Physiol ; 307(7): F844-55, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25100280

RESUMO

It has been presupposed that the thermodynamic stability constant (K(therm)) of gadolinium-based MRI chelates relate to the risk of precipitating nephrogenic systemic fibrosis. The present study compared low-K(therm) gadodiamide with high-K(therm) gadoteridol in cultured fibroblasts and rats with uninephrectomies. Gadolinium content was assessed using scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy in paraffin-embedded tissues. In vitro, fibroblasts demonstrated dose-dependent fibronectin generation, transforming growth factor-ß production, and expression of activated myofibroblast stress fiber protein α-smooth muscle actin. There were negligible differences with respect to toxicity or proliferation between the two contrast agents. In the rodent model, gadodiamide treatment led to greater skin fibrosis and dermal cellularity than gadoteridol. In the kidney, both contrast agents led to proximal tubule vacuolization and increased fibronectin accumulation. Despite large detectable gadolinium signals in the spleen, skin, muscle, and liver from the gadodiamide-treated group, contrast-induced fibrosis appeared to be limited to the skin and kidney. These findings support the hypothesis that low-K(therm) chelates have a greater propensity to elicit nephrogenic systemic fibrosis and demonstrate that certain tissues are resistant to these effects.


Assuntos
Meios de Contraste/efeitos adversos , Gadolínio DTPA/efeitos adversos , Compostos Heterocíclicos/efeitos adversos , Dermopatia Fibrosante Nefrogênica/induzido quimicamente , Compostos Organometálicos/efeitos adversos , Animais , Células Cultivadas , Meios de Contraste/química , Feminino , Fibroblastos/metabolismo , Fibronectinas/metabolismo , Gadolínio/efeitos adversos , Gadolínio/química , Gadolínio DTPA/química , Compostos Heterocíclicos/química , Humanos , Imageamento por Ressonância Magnética , Dermopatia Fibrosante Nefrogênica/metabolismo , Compostos Organometálicos/química , Ratos Endogâmicos F344 , Insuficiência Renal/complicações , Termodinâmica
11.
Am J Physiol Renal Physiol ; 307(2): F159-71, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24872317

RESUMO

The small G proteins Rac1 and RhoA regulate actin cytoskeleton, cell shape, adhesion, migration, and proliferation. Recent studies in our laboratory have shown that NADPH oxidase Nox4-derived ROS are involved in transforming growth factor (TGF)-ß1-induced rat kidney myofibroblast differentiation assessed by the acquisition of an α-smooth muscle actin (α-SMA) phenotype and expression of an alternatively spliced fibronectin variant (Fn-EIIIA). Rac1 and RhoA are essential in signaling by some Nox homologs, but their role as effectors of Nox4 in kidney myofibroblast differentiation is not known. In the present study, we explored a link among Rac1 and RhoA and Nox4-dependent ROS generation in TGF-ß1-induced kidney myofibroblast activation. TGF-ß1 stimulated an increase in Nox4 protein expression, NADPH oxidase activity, and abundant α-SMA and Fn-EIIIA expression. RhoA but not Rac1 was involved in TGF-ß1 induction of Nox4 signaling of kidney myofibroblast activation. TGF-ß1 stimulated active RhoA-GTP and increased Rho kinase (ROCK). Inhibition of RhoA with small interfering RNA and ROCK using Y-27632 significantly reduced TGF-ß1-induced stimulation of Nox4 protein, NADPH oxidase activity, and α-SMA and Fn-EIIIA expression. Treatment with diphenyleneiodonium, an inhibitor of NADPH oxidase, did not decrease RhoA activation but inhibited TGF-ß1-induced α-SMA and Fn-EIIIA expression, indicating that RhoA is upstream of ROS generation. RhoA/ROCK also regulated polymerase (DNA-directed) δ-interacting protein 2 (Poldip2), a newly discovered Nox4 enhancer protein. Collectively, these data indicate that RhoA/ROCK is upstream of Poldip2-dependent Nox4 regulation and ROS production and induces redox signaling of kidney myofibroblast activation and may broader implications in the pathophysiology of renal fibrosis.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Rim/enzimologia , Miofibroblastos/enzimologia , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Actinas/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Diferenciação Celular , Linhagem Celular , Movimento Celular , Ativação Enzimática , Fibronectinas/metabolismo , Fibrose , Rim/patologia , Miofibroblastos/patologia , NADPH Oxidase 4 , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/genética , Oxirredução , Fenótipo , Inibidores de Proteínas Quinases/farmacologia , Interferência de RNA , Ratos , Transdução de Sinais , Fatores de Tempo , Transfecção , Proteínas rac1 de Ligação ao GTP/antagonistas & inibidores , Proteínas rac1 de Ligação ao GTP/metabolismo , Quinases Associadas a rho/antagonistas & inibidores , Proteína rhoA de Ligação ao GTP/genética
12.
Am J Physiol Renal Physiol ; 305(3): F323-32, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23678045

RESUMO

Matrix protein accumulation is a prominent feature of diabetic nephropathy that contributes to renal fibrosis and decline in renal function. The pathogenic mechanisms of matrix accumulation are incompletely characterized. We investigated if the matrix metalloprotease a disintegrin and metalloprotease1 7 (ADAM17), known to cleave growth factors and cytokines, is activated in the kidney cortex of OVE26 type 1 diabetic mice and the potential mechanisms by which ADAM17 mediates extracellular matrix accumulation. Protein expression and activity of ADAM17 were increased in OVE26 kidney cortex. Using a pharmacological inhibitor to ADAM17, TMI-005, we determined that ADAM17 activation results in increased type IV collagen, Nox4, and NADPH oxidase activity in the kidney cortex of diabetic mice. In cultured mouse proximal tubular epithelial cells (MCTs), high glucose increases ADAM17 activity, Nox4 and fibronectin expression, cellular collagen content, and NADPH oxidase activity. These effects of glucose were inhibited when cells were pretreated with TMI-005 and/or transfected with small interfering ADAM17. Collectively, these data indicate a novel mechanism whereby hyperglycemia in diabetes increases extracellular matrix protein expression in the kidney cortex through activation of ADAM17 and enhanced oxidative stress through Nox enzyme activation. Additionally, our study is the first to provide evidence that Nox4 is downstream of ADAM17.


Assuntos
Proteínas ADAM/fisiologia , Diabetes Mellitus Tipo 1/metabolismo , Córtex Renal/metabolismo , NADPH Oxidases/metabolismo , Proteína ADAM17 , Animais , Western Blotting , Peso Corporal/fisiologia , Colágeno/metabolismo , Colágeno Tipo IV/metabolismo , Fibronectinas/metabolismo , Imunofluorescência , Glucose/metabolismo , Glucose/farmacologia , Técnicas Imunoenzimáticas , Córtex Renal/enzimologia , Masculino , Camundongos , NADPH Oxidase 4 , NADPH Oxidases/biossíntese , NADPH Oxidases/genética , Tamanho do Órgão/fisiologia , RNA Interferente Pequeno/farmacologia
13.
Am J Pathol ; 181(6): 1941-52, 2012 12.
Artigo em Inglês | MEDLINE | ID: mdl-23041060

RESUMO

Nephrogenic systemic fibrosis (NSF) is associated with gadolinium-based magnetic resonance imaging (MRI) contrast exposure in the setting of acute or chronic renal compromise. It has been proposed that circulating fibrocytes mediate the disease. A study was conducted to determine whether bone marrow-derived fibroblast precursors are involved in contributing to organ fibrosis in MRI contrast-treated rodents with renal insufficiency. Rats status post 5/6 nephrectomy underwent bone marrow transplant from human placental alkaline phosphatase (hPAP)-expressing donors. After engraftment, animals were treated with gadolinium-based MRI contrast (2.5 mmol/kg IP), during weekdays for 4 weeks, or an equivalent volume of normal saline. Dermal cellularity in the contrast-treated group was fourfold that of control. Skin cells from the contrast-treated group demonstrated greater hPAP expression with co-expression of pro-collagen I and α-smooth muscle actin-positive stress fibers. Donor and host cells expressed CD34. Dihydroethidium staining of skin was greater in the contrast-treated animals, indicating oxidative stress. This was abrogated when the animals were co-administered the superoxide dismutase mimetic tempol. In conclusion, a bone marrow-derived cell population is increased in the dermis of MRI contrast-treated rodents. The cell markers are consistent with fibrocytes mediating the disease. These changes correlate with oxidative stress and expression of Nox4, suggestive of a novel therapeutic target. Elucidation of the mechanisms of MRI contrast-induced fibrosis may aid in discovering therapies to this devastating disease.


Assuntos
Medula Óssea/patologia , Fibroblastos/patologia , Fígado/patologia , Miocárdio/patologia , Dermopatia Fibrosante Nefrogênica/patologia , Estresse Oxidativo , Pele/patologia , Animais , Antígenos CD/metabolismo , Antígenos CD34/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Colágeno Tipo I/metabolismo , Meios de Contraste/efeitos adversos , Derme/patologia , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Fator XIIIa/metabolismo , Feminino , Fibroblastos/metabolismo , Fibrose , Humanos , Fígado/metabolismo , Imageamento por Ressonância Magnética , Nefrectomia , Dermopatia Fibrosante Nefrogênica/metabolismo , Tamanho do Órgão , Ratos , Ratos Endogâmicos F344 , Espécies Reativas de Oxigênio/metabolismo , Pele/metabolismo , Dobras Cutâneas
14.
Am J Pathol ; 180(2): 819-30, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22138298

RESUMO

Kidney development is regulated by a coordinated reciprocal induction of metanephric mesenchymal (MM) and ureteric bud (UB) cells. Here, established MM and UB progenitor cell lines were recombined in three-dimensional Matrigel implants in SCID mice. Differentiation potential was examined for changes in phenotype, organization, and the presence of specialized proteins using immunofluorescence and bright-field and electron microscopy. Both cell types, when grown alone, did not develop into specialized structures. When combined, the cells organized into simple organoid structures of polarized epithelia with lumens surrounded by capillary-like structures. Tracker experiments indicated the UB cells formed the tubuloid structures, and the MM cells were the source of the capillary-like cells. The epithelial cells stained positive for pancytokeratin, the junctional complex protein ZO-1, collagen type IV, as well as UB and collecting duct markers, rearranged during transfection (RET), Dolichos biflorus lectin, EndoA cytokeratin, and aquaporin 2. The surrounding cells expressed α-smooth muscle actin, vimentin, platelet endothelial cell adhesion molecule 1 (PECAM), and aquaporin 1, a marker of vasculogenesis. The epithelium exhibited apical vacuoles, microvilli, junctional complexes, and linear basement membranes. Capillary-like structures showed endothelial features with occasional pericytes. UB cell epithelialization was augmented in the presence of MM cell-derived conditioned medium, glial-derived neurotrophic factor (GDNF), hepatocyte growth factor (HGF), or fibronectin. MM cells grown in the presence of UB-derived conditioned medium failed to undergo differentiation. However, UB cell-derived conditioned medium induced MM cell migration. These studies indicate that tubulogenesis and vasculogenesis can be partially recapitulated by recombining individual MM and UB cell lineages, providing a new model system to study organogenesis ex vivo.


Assuntos
Rim/embriologia , Células-Tronco/fisiologia , Ureter/embriologia , Animais , Diferenciação Celular , Linhagem Celular , Movimento Celular/fisiologia , Colágeno/farmacologia , Meios de Cultivo Condicionados/farmacologia , Combinação de Medicamentos , Células Epiteliais/ultraestrutura , Células Alimentadoras/fisiologia , Fibronectinas/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator de Crescimento de Hepatócito/metabolismo , Rim/citologia , Rim/crescimento & desenvolvimento , Laminina/farmacologia , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos SCID , Técnicas de Cultura de Órgãos/métodos , Organogênese/fisiologia , Proteoglicanas/farmacologia , Células-Tronco/citologia , Ureter/citologia , Ureter/crescimento & desenvolvimento
15.
Toxicol Pathol ; 40(7): 1020-30, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22552392

RESUMO

Naturally occurring type 2 diabetes has been found in a colony of baboons. Ongoing characterization of the baboon colony maintained at the Southwest National Primate Research Center has revealed a significant range of glucose sensitivity with some animals clearly diabetic.   Seven baboons, four with diabetes and three without diabetes, underwent histopathological investigation. Three diabetic animals were diagnosed using fasting blood glucose, hemoglobin A1C, and intravenous glucose tolerance test, and a fourth one was known to have hyperglycemia. One control baboon and three baboons with diabetes had microalbuminuria. On kidney biopsy, diabetic baboons had thickening of the glomerular basement membrane and mesangial matrix expansion compared to controls. Immunohistochemistry showed the diabetic animals had increased mesangial expression of cellular fibronectin ED-A. Two diabetic animals with microalbuminuria had evidence of mesangiolysis with the formation of an early nodule. One diabetic animal had a Kimmestiel-Wilson nodule. We conclude that the baboon represents a useful primate model of diabetes and nephropathy that resembles the nephropathy associated with type 2 diabetes in humans.


Assuntos
Diabetes Mellitus Tipo 2/patologia , Nefropatias Diabéticas/patologia , Modelos Animais de Doenças , Rim/patologia , Papio/fisiologia , Animais , Biópsia , Glicemia/metabolismo , Capilares/ultraestrutura , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/fisiopatologia , Feminino , Privação de Alimentos , Teste de Tolerância a Glucose , Hemodinâmica , Glomérulos Renais/irrigação sanguínea , Masculino
16.
J Immunol ; 184(9): 5280-6, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-20368275

RESUMO

The therapeutic efficacy of individual components of fish oils (FOs) in various human inflammatory diseases still remains unresolved, possibly due to low levels of n-3 fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) or lower ratio of DHA to EPA. Because FO enriched with DHA (FO-DHA) or EPA (FO-EPA) has become available recently, we investigated their efficacy on survival and inflammatory kidney disease in a well-established animal model of human systemic lupus erythematosus. Results show for the first time that FO-DHA dramatically extends both the median (658 d) and maximal (848 d) life span of (NZB x NZW)F1 (B x W) mice. In contrast, FO-EPA fed mice had a median and maximal life span of approximately 384 and 500 d, respectively. Investigations into possible survival mechanisms revealed that FO-DHA (versus FO-EPA) lowers serum anti-dsDNA Abs, IgG deposition in kidneys, and proteinuria. Further, FO-DHA lowered LPS-mediated increases in serum IL-18 levels and caspase-1-dependent cleavage of pro-IL-18 to mature IL-18 in kidneys. Moreover, FO-DHA suppressed LPS-mediated PI3K, Akt, and NF-kappaB activations in kidney. These data indicate that DHA, but not EPA, is the most potent n-3 fatty acid that suppresses glomerulonephritis and extends life span of systemic lupus erythematosus-prone short-lived B x W mice, possibly via inhibition of IL-18 induction and IL-18-dependent signaling.


Assuntos
Ácidos Docosa-Hexaenoicos/administração & dosagem , Ácido Eicosapentaenoico/administração & dosagem , Óleos de Peixe/administração & dosagem , Nefrite Lúpica/tratamento farmacológico , Nefrite Lúpica/imunologia , Proteinúria/tratamento farmacológico , Animais , Autoanticorpos/biossíntese , Autoanticorpos/metabolismo , Óleo de Milho/administração & dosagem , Óleo de Milho/uso terapêutico , Cruzamentos Genéticos , Ácidos Docosa-Hexaenoicos/uso terapêutico , Sinergismo Farmacológico , Ácido Eicosapentaenoico/uso terapêutico , Feminino , Óleos de Peixe/uso terapêutico , Imunoglobulina G/biossíntese , Imunoglobulina G/metabolismo , Mediadores da Inflamação/administração & dosagem , Mediadores da Inflamação/uso terapêutico , Longevidade/imunologia , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/fisiopatologia , Nefrite Lúpica/fisiopatologia , Camundongos , Camundongos Endogâmicos NZB , Proteinúria/imunologia , Proteinúria/fisiopatologia , Distribuição Aleatória , Fatores de Tempo
17.
J Biol Chem ; 285(48): 37503-12, 2010 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-20861022

RESUMO

Diabetes and high glucose (HG) increase the generation of NADPH oxidase-derived reactive oxygen species and induce apoptosis of glomerular epithelial cells (podocytes). Loss of podocytes contributes to albuminuria, a major risk factor for progression of kidney disease. Here, we show that HG inactivates AMP-activated protein kinase (AMPK), up-regulates Nox4, enhances NADPH oxidase activity, and induces podocyte apoptosis. Activation of AMPK blocked HG-induced expression of Nox4, NADPH oxidase activity, and apoptosis. We also identified the tumor suppressor protein p53 as a mediator of podocyte apoptosis in cells exposed to HG. Inactivation of AMPK by HG up-regulated the expression and phosphorylation of p53, and p53 acted downstream of Nox4. To investigate the mechanism of podocyte apoptosis in vivo, we used OVE26 mice, a model of type 1 diabetes. Glomeruli isolated from these mice showed decreased phosphorylation of AMPK and enhanced expression of Nox4 and p53. Pharmacologic activation of AMPK by 5-aminoimidazole-4-carboxamide-1-riboside in OVE26 mice attenuated Nox4 and p53 expression. Administration of 5-aminoimidazole-4-carboxamide-1-riboside also prevented renal hypertrophy, glomerular basement thickening, foot process effacement, and podocyte loss, resulting in marked reduction in albuminuria. Our results uncover a novel function of AMPK that integrates metabolic input to Nox4 and provide new insight for activation of p53 to induce podocyte apoptosis. The data indicate the potential therapeutic utility of AMPK activators to block Nox4 and reactive oxygen species generation and to reduce urinary albumin excretion in type 1 diabetes.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Apoptose , Diabetes Mellitus/genética , Regulação para Baixo , Podócitos/citologia , Proteína Supressora de Tumor p53/genética , Proteínas Quinases Ativadas por AMP/genética , Animais , Diabetes Mellitus/enzimologia , Diabetes Mellitus/metabolismo , Diabetes Mellitus/fisiopatologia , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Glucose/genética , Humanos , Masculino , Camundongos , NADPH Oxidase 4 , NADPH Oxidases , Fosforilação , Podócitos/metabolismo , Proteína Supressora de Tumor p53/metabolismo
18.
Am J Physiol Renal Physiol ; 300(1): F219-30, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20943765

RESUMO

Diabetes promotes protein synthesis to induce kidney hypertrophy and increase renal matrix proteins. Increased capacity for mRNA translation by way of ribosomal biogenesis facilitates sustained stimulation of protein synthesis. We tested the hypothesis that high glucose induces ribosomal biogenesis as indicated by an increase in rRNA synthesis in the setting of augmented protein synthesis. High glucose (30 mM) increased global protein synthesis, expression of matrix proteins, laminin γ1 and fibronectin, and rDNA transcription in glomerular epithelial cells (GECs) compared with 5 mM glucose. High glucose induced Ser388 phosphorylation of upstream binding factor (UBF), an rDNA transcription factor, along with increased phosphorylation of Erk and p70S6 kinase. Inactivation of Erk and p70S6 kinase either by their respective chemical inhibitors or by expression of their inactive mutant constructs blocked high-glucose-induced UBF phosphorylation. High glucose reduced nuclear content of p19ARF and promoted dissolution of inactive UBF-p19ARF complex. High glucose also promoted association of UBF with RPA194, a subunit of RNA polymerase I. Inhibition of Erk, p70S6 kinase, and UBF1 by transfecting GECs with their respective inactive mutants abolished laminin γ1 synthesis, protein synthesis, and rDNA transcription. Renal cortex from type 1 diabetic rats and type 2 diabetic db/db mice showed increased phosphorylation of UBF, Erk, and p70S6 kinase coinciding with renal hypertrophy and onset of matrix accumulation. Our data suggest that augmented ribosome biogenesis occurs in an UBF-dependent manner during increased protein synthesis induced by high glucose in the GECs that correlates with UBF activation and renal hypertrophy in rodents with type 1 and type 2 diabetes.


Assuntos
Células Epiteliais/metabolismo , Glucose/administração & dosagem , Proteínas Pol1 do Complexo de Iniciação de Transcrição/metabolismo , Ribossomos/fisiologia , Animais , Células Cultivadas , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , DNA Polimerase I/metabolismo , DNA Ribossômico/metabolismo , Diabetes Mellitus Experimental/metabolismo , Fibronectinas/biossíntese , Glucose/farmacologia , Hipertrofia , Rim/patologia , Glomérulos Renais/citologia , Laminina/biossíntese , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação/efeitos dos fármacos , Ratos , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Serina-Treonina Quinases TOR/metabolismo
19.
Kidney Int ; 79(9): 944-56, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21307839

RESUMO

Progression of fibrosis involves interstitial hypercellularity, matrix accumulation, and atrophy of epithelial structures, resulting in loss of normal function and ultimately organ failure. There is common agreement that the fibroblast/myofibroblast is the cell type most responsible for interstitial matrix accumulation and consequent structural deformations associated with fibrosis. During wound healing and progressive fibrotic events, fibroblasts transform into myofibroblasts acquiring smooth muscle features, most notably the expression of alpha-smooth muscle actin and synthesis of mesenchymal cell-related matrix proteins. In renal disease, glomerular mesangial cells also acquire a myofibroblast phenotype and synthesize the same matrix proteins. The origin of interstitial myofibroblasts during fibrosis is a matter of debate, where the cells are proposed to derive from resident fibroblasts, pericytes, perivascular adventitial, epithelial, and/or endothelial sources. Regardless of the origin of the cells, transforming growth factor-beta1 (TGF-ß1) is the principal growth factor responsible for myofibroblast differentiation to a profibrotic phenotype and exerts its effects via Smad signaling pathways involving mitogen-activated protein kinase and Akt/protein kinase B. Additionally, reactive oxygen species (ROS) have important roles in progression of fibrosis. ROS are derived from a variety of enzyme sources, of which the nicotinamide adenine dinucleotide phosphate (NAD(P)H) oxidase family has been identified as a major source of superoxide and hydrogen peroxide generation in the cardiovasculature and kidney during health and disease. Recent evidence indicates that the NAD(P)H oxidase homolog Nox4 is most accountable for ROS-induced fibroblast and mesangial cell activation, where it has an essential role in TGF-ß1 signaling of fibroblast activation and differentiation into a profibrotic myofibroblast phenotype and matrix production. Information on the role of ROS in mesangial cell and fibroblast signaling is incomplete, and further research on myofibroblast differentiation during fibrosis is warranted.


Assuntos
Fibrose/patologia , Miofibroblastos/citologia , NADPH Oxidases/fisiologia , Animais , Diferenciação Celular , Fibroblastos/metabolismo , Fibronectinas/fisiologia , Humanos , Células Mesangiais/fisiologia , NADPH Oxidase 4 , Pericitos/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Fator de Crescimento Transformador beta1/fisiologia
20.
J Am Soc Nephrol ; 21(1): 93-102, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19926889

RESUMO

TGF-beta1 expression closely associates with activation and conversion of fibroblasts to a myofibroblast phenotype and synthesis of an alternatively spliced cellular fibronectin variant, Fn-ED-A. Reactive oxygen species (ROS), such as superoxide, which is a product of NAD(P)H oxidase, also promote the transition of fibroblasts to myofibroblasts, but whether these two pathways are interrelated is unknown. Here, we examined a role for NAD(P)H oxidase-derived ROS in TGF-beta1-induced activation of rat kidney fibroblasts and expression of alpha-smooth muscle actin (alpha-SMA) and Fn-ED-A. In vitro, TGF-beta1 stimulated formation of abundant stress fibers and increased expression of both alpha-SMA and Fn-ED-A. In addition, TGF-beta1 increased both the activity of NADPH oxidase and expression of Nox2 and Nox4, homologs of the NAD(P)H oxidase family, indicating that this growth factor induces production of ROS. Small interfering RNA targeted against Nox4 markedly inhibited TGF-beta1-induced stimulation of NADPH oxidase activity and reduced alpha-SMA and Fn-ED-A expression. Inhibition of TGF-beta1 receptor 1 blocked Smad3 phosphorylation; reduced TGF-beta1-enhanced NADPH oxidase activity; and decreased expression of Nox4, alpha-SMA, and Fn-ED-A. Diphenyleneiodonium, an inhibitor of flavin-containing enzymes such as the Nox oxidases, had no effect on TGF-beta1-induced Smad3 but reduced both alpha-SMA and Fn-ED-A protein expression. The Smad3 inhibitor SIS3 reduced NADPH oxidase activity, Nox4 expression, and blocked alpha-SMA and Fn-ED-A, indicating that stimulation of myofibroblast activation by ROS is downstream of Smad3. In addition, TGF-beta1 stimulated phosphorylation of extracellular signal-regulated kinase (ERK1/2), and this was inhibited by blocking TGF-beta1 receptor 1, Smad3, or the Nox oxidases; ERK1/2 activation increased alpha-SMA and Fn-ED-A. Taken together, these results suggest that TGF-beta1-induced conversion of fibroblasts to a myofibroblast phenotype involves a signaling cascade through Smad3, NAD(P)H oxidase, and ERK1/2.


Assuntos
Diferenciação Celular/fisiologia , Fibroblastos/citologia , Fibroblastos/metabolismo , NADPH Oxidases/metabolismo , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta1/metabolismo , Actinas/metabolismo , Animais , Linhagem Celular , Fibronectinas/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Modelos Animais , NADPH Oxidase 2 , NADPH Oxidase 4 , Ratos , Espécies Reativas de Oxigênio/metabolismo , Proteína Smad3/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA