RESUMO
At labor, the myometrium is infiltrated by a massive influx of macrophages that secrete high levels of pro-inflammatory cytokines inducing the expression of specific labor-associated markers. However, the interactions between myocytes and macrophages and the role of macrophages in the myometrium at labor remain to be elucidated. In this work, we studied the role of myometrium-infiltrated macrophages and their interaction with myocytes in lipopolysaccharide-induced preterm labor. A co-culture model of human primary myometrial cells and macrophages was developed and validated. Collagen lattices were used to evaluate myocyte contraction. Differentiation steps were assessed by (i) phalloidin and vinculin staining for cytoskeleton reorganization, (ii) gap junction protein alpha 1 expression and scrape loading/dye transfer with Lucifer Yellow for gap junction intercellular communication, and (iii) calcium imaging for cell excitability. We demonstrated that macrophages favored lipopolysaccharide-induced contraction and early differentiation of myometrial cells. Transwell assays showed that previous activation of macrophages by lipopolysaccharide was essential for this differentiation and that macrophage/myocyte interactions involved macrophage release of reactive oxygen species (ROS). The effects of macrophage-released ROS in myometrial cell transactivation were mimicked by H2O2, suggesting that superoxide anion is a major intermediate messenger in macrophage/myocyte crosstalk during labor. These novel findings provide the foundation for innovative approaches to managing preterm labor, specifically the use of antioxidants to inhibit the initial stages of labor before the contractile phenotype has been acquired. In addition, the co-culture model developed by our team could be used in future research to decipher pathophysiological signaling pathways or screen/develop new tocolytics.
Assuntos
Macrófagos/fisiologia , Miométrio/citologia , Parto/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Contração Uterina/fisiologia , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Feminino , Humanos , Peróxido de Hidrogênio/farmacologia , Lipopolissacarídeos/farmacologia , Contração Uterina/efeitos dos fármacosRESUMO
Preterm birth is an inflammatory process resulting from the massive infiltration of innate immune cells and the production of proinflammatory cytokines in the myometrium. However, proinflammatory cytokines, which induce labor in vivo, fail to induce labor-associated features in human myometrial cells (MCs). We thus aimed to investigate if reactive oxygen species (ROS) production could be the missing step between immune cell activation and MC response. Indeed, we found that ROS production is increased in the human preterm laboring myometrium (27% ROS producing cells, respectively, versus 2% in nonlaboring controls), with 90% ROS production in macrophages. Using LPS-stimulated myometrial samples and cell coculture experiments, we demonstrated that ROS production is required for labor onset. Furthermore, we showed that ROS are required first in the NADPH oxidase (NADPHox)-2/NF-κB-dependent macrophage response to inflammatory stimuli but, more importantly, to trigger macrophage-induced MCs transactivation. Remarkably, in a murine model of LPS-induced preterm labor (inducing delivery within 17 hours, with no pup survival), cotreatment with glutathione delayed labor onset up to 94 hours and prevented in utero fetal distress, allowing 46% pups to survive. These results suggest that targeting ROS production with the macrophage-permeable antioxidant glutathione could constitute a promising strategy to prevent preterm birth.
Assuntos
Morte Fetal/prevenção & controle , Glutationa/farmacologia , Macrófagos/metabolismo , Miométrio/efeitos dos fármacos , Trabalho de Parto Prematuro/prevenção & controle , Espécies Reativas de Oxigênio/metabolismo , Adulto , Animais , Animais Recém-Nascidos , Western Blotting , Linhagem Celular Tumoral , Células Cultivadas , Feminino , Expressão Gênica , Glutationa/administração & dosagem , Humanos , Recém-Nascido , Lipopolissacarídeos , Masculino , Camundongos Endogâmicos C57BL , Miométrio/citologia , Miométrio/metabolismo , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , NF-kappa B/metabolismo , Trabalho de Parto Prematuro/induzido quimicamente , Trabalho de Parto Prematuro/metabolismo , Gravidez , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Adulto JovemRESUMO
The beta3 adrenergic receptor (B3-AR) reportedly induces cell proliferation, but the signaling pathways that were proposed, involving either Gs or Gi coupling, remain controversial. To further investigate the role of G protein coupling in B3-AR induced proliferation, we stimulated primary human myometrial smooth muscle cells with SAR150640 (B3-AR agonist) in the absence or presence of variable G-protein inhibitors. Specific B3-AR stimulation led to an Erk1/2 induced proliferation. We observed that the proliferative effects of B3-AR require two Erk1/2 activation peaks (the first after 3min, the second at 8h). Erk1/2 activation at 3min was mimicked by forskolin (adenylyl-cyclase activator), and was resistant to pertussis toxin (Gi inhibitor), suggesting a Gs protein signaling. This first signaling also required the downstream Gs signaling effectors PKA and Src. However, Erk1/2 activation at 8h turned out to be pertussis toxin-dependent, and PKA-independent, indicating a Gi signaling pathway in which Src and PI3K were required. The pharmacological inhibition of both the Gs and Gi pathway abolished B3-AR-induced proliferation. Altogether, these data indicate that B3-AR-induced proliferation depends on the biphasic activation of Erk1/2 sequentially induced by the Gs/PKA/Src and Gi/Src/PI3K signaling pathways.
Assuntos
Proliferação de Células/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Miócitos de Músculo Liso , Receptores Adrenérgicos beta/metabolismo , Células Cultivadas , Colforsina/farmacologia , Feminino , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/antagonistas & inibidores , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/antagonistas & inibidores , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miométrio/metabolismo , Toxina Pertussis/farmacologiaRESUMO
OBJECTIVES: To study the influence of pregnancy and labor on the proportion and level of activation of monocyte subpopulations in human pregnancy. STUDY DESIGN: Peripheral blood samples were obtained from healthy nonpregnant women (n = 6); women in the third-trimester of healthy pregnancies (n = 18) and women with preterm premature rupture of membranes (n = 46), just before delivery for the last 2 groups. Monocyte subpopulations were characterized by flow cytometry using CD14, CD16, and activation level using macrophage chemoattractant protein-1 (MCP-1) and CCR2 antibodies. RESULTS: The relative proportion of each monocyte subset in nonpregnant women was similar to that in women with healthy or complicated pregnancies. However, pregnancy was associated with a significant decrease in MCP-1 expressing monocytes (79.5% ± 19.8% vs 9.3% ± 6.8% and 11.9% ± 8.3% for nonpregnant, healthy pregnancy, and preterm premature rupture of membranes (respectively, P < .05). Spontaneous labor was associated with a return to nonpregnant values for the proportion of MCP-1 expressing monocytes in both normal (74.4% ± 16.9) and preterm premature rupture of membranes pregnancy (68.4% ± 35.6), irrespective of the mode of delivery (vaginal or cesarean section). This was not observed in women who delivered without spontaneous labor onset. CCR-2 (MCP-1 receptor) expression was not modified in monocytes at the time of labor, but was significantly increased in granulocytes (3646 ± 1080 vs 7338 ± 2718 for nonlaboring and laboring preterm premature rupture of membranes, respectively, P < .05) CONCLUSION: In light of previous reports of a role for MCP-1 in labor, our results suggest the downregulation of activation levels of monocytes, via MCP-1 expression might be involved in maternofetal immune tolerance. Monocyte reactivation might be associated with labor.
Assuntos
Biomarcadores/sangue , Quimiocina CCL2/sangue , Ruptura Prematura de Membranas Fetais/sangue , Trabalho de Parto/sangue , Receptores de Lipopolissacarídeos/sangue , Monócitos/metabolismo , Trabalho de Parto Prematuro/sangue , Terceiro Trimestre da Gravidez/sangue , Receptores de IgG/sangue , Adolescente , Adulto , Feminino , Citometria de Fluxo , Humanos , Gravidez , Estudos Prospectivos , Adulto JovemRESUMO
Reorganization of myometrial extracellular matrix (ECM) is essential for the uterus to achieve powerful synchronous contractions during labor. Remodeling of the ECM has been implicated in membrane rupture and cervical ripening. Because maternal obesity is associated with both delivery disorders and elevated circulating leptin levels, this study aimed to assess the ability of leptin to interfere with lipopolysaccharide (LPS)-induced myometrial ECM remodeling. Myometrial biopsy samples were obtained from women undergoing cesarean delivery before labor onset. Myometrial explants were incubated for 48 h with LPS and leptin. LPS challenge was associated with a marked decrease in collagen content and in heat shock protein (HSP) 47 expression, reflecting a disruption in collagen synthesis and an increase in matrix metalloproteinase (MMP) 2 and MMP9 activity and in MMP2, MMP9, and MMP13 expression. Leptin prevented an LPS-induced decrease in myometrial collagen content in a concentration-dependent manner. This effect was associated with an increase in HSP47 expression and a decrease in MMP2 and MMP9 activity and expression. These results show that leptin prevents LPS-induced myometrial remodeling through collagen synthesis stimulation and inhibition of MMP2 and MMP9. Our study strengthens the hypothesis that leptin plays a role in the development of obesity-related delivery disorders.
Assuntos
Matriz Extracelular/metabolismo , Inflamação/metabolismo , Leptina/farmacologia , Lipopolissacarídeos/farmacologia , Miométrio/efeitos dos fármacos , Miométrio/metabolismo , Adulto , Biópsia , Colágeno/metabolismo , Relação Dose-Resposta a Droga , Matriz Extracelular/patologia , Feminino , Proteínas de Choque Térmico HSP47/metabolismo , Humanos , Técnicas In Vitro , Inflamação/patologia , Metaloproteinase 13 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Miométrio/patologia , Obesidade/metabolismo , Obesidade/patologia , Gravidez , Complicações na Gravidez/metabolismo , Complicações na Gravidez/patologiaRESUMO
Maternal obesity is associated with a wide spectrum of labour disorders, including preterm birth. Leptin, a pro-inflammatory adipokine and a key factor of obesity, is suspected to play a major role in these disorders. OB-R, its receptor, is expressed on macrophages and myocytes, two cell types critical for labour onset. Macrophages secrete reactive oxygen species/pro-inflammatory cytokines, responsible for myometrial differentiation while myocytes control uterine contractions. In this study, we assessed the effect of leptin on myometrial contraction and differentiation using our validated co-culture model of human primary macrophages and myocytes. We demonstrated that leptin had a different effect on myocytes and macrophages depending on the dose. A low leptin concentration induced a tocolytic effect by preventing myocytes' contraction, differentiation, and macrophage-induced ROS production. Additionally, leptin led to an increase in HLA-G expression, suggesting that the tocolytic effect of leptin may be driven by HLA-G, a tolerogenic molecule. Finally, we observed that recombinant HLA-G also prevented LPS-induced ROS production by macrophages. Altogether, these data provide a putative molecular mechanism by which leptin may induce immune tolerance and therefore interfere with labour-associated mechanisms. Therefore, HLA-G represents a potential innovative therapeutic target in the pharmacological management of preterm labour.
Assuntos
Nascimento Prematuro , Tocolíticos , Feminino , Antígenos HLA-G , Humanos , Recém-Nascido , Leptina/farmacologia , Gravidez , Nascimento Prematuro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Contração UterinaRESUMO
BACKGROUND AND PURPOSE: Leptin, an adipokine synthesized by the placenta during pregnancy, has been proposed for the management of preterm labour (PTL), as it is able to prevent in vitro uterine contractility and remodelling associated with labour onset. Another common feature of labour onset is the phenotypic switch of myometrial smooth muscle cells from a proliferative to a hypertrophic state. As proliferative effects have been demonstrated for leptin in other tissues, we aimed to investigate its ability to induce myometrial proliferation and thus to maintain uterine quiescence. EXPERIMENTAL APPROACH: We stimulated human primary myometrial smooth muscle cells with leptin in the presence or absence of receptor antagonists or signalling pathway inhibitors. KEY RESULTS: Leptin induced myometrial cell proliferation in a biphasic manner. At 6.25 ng · mL(-1), leptin-induced proliferation was mediated by the leptin receptor and required the early activation of ERK1/2. At a concentration above 25 ng · mL(-1), leptin induced direct non-specific stimulation of the IL-6 receptor, leading to NF-κB activation, and exerted anti-proliferative effects. However, at 50 ng · mL(-1), leptin re-induces proliferation via IL-6 receptor stimulation that requires STAT3 and delayed ERK1/2 activation. CONCLUSIONS AND IMPLICATIONS: These data bring new insights into leptin signalling-induced myometrial proliferation and its interrelationship with the IL-6/IL-6 receptor axis. In the light of our previous work, the present study emphasizes the potential value of leptin in the pharmacological management of PTL and it also strengthens the hypothesis that leptin might be a contributory factor in the parturition-related disorders observed in obese women.