Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Pathog ; 16(10): e1008929, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33002063

RESUMO

The ability of Mycobacterium tuberculosis (Mtb) to persist inside host cells relies on metabolic adaptation, like the accumulation of lipid bodies (LBs) in the so-called foamy macrophages (FM), which are favorable to Mtb. The activation state of macrophages is tightly associated to different metabolic pathways, such as lipid metabolism, but whether differentiation towards FM differs between the macrophage activation profiles remains unclear. Here, we aimed to elucidate whether distinct macrophage activation states exposed to a tuberculosis-associated microenvironment or directly infected with Mtb can form FM. We showed that the triggering of signal transducer and activator of transcription 6 (STAT6) in interleukin (IL)-4-activated human macrophages (M(IL-4)) prevents FM formation induced by pleural effusion from patients with tuberculosis. In these cells, LBs are disrupted by lipolysis, and the released fatty acids enter the ß-oxidation (FAO) pathway fueling the generation of ATP in mitochondria. Accordingly, murine alveolar macrophages, which exhibit a predominant FAO metabolism, are less prone to become FM than bone marrow derived-macrophages. Interestingly, direct infection of M(IL-4) macrophages with Mtb results in the establishment of aerobic glycolytic pathway and FM formation, which could be prevented by FAO activation or inhibition of the hypoxia-inducible factor 1-alpha (HIF-1α)-induced glycolytic pathway. In conclusion, our results demonstrate that Mtb has a remarkable capacity to induce FM formation through the rewiring of metabolic pathways in human macrophages, including the STAT6-driven alternatively activated program. This study provides key insights into macrophage metabolism and pathogen subversion strategies.


Assuntos
Células Espumosas/microbiologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Metabolismo dos Lipídeos , Macrófagos/microbiologia , Mycobacterium tuberculosis/patogenicidade , Animais , Gotículas Lipídicas/metabolismo , Ativação de Macrófagos/fisiologia , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Mycobacterium tuberculosis/fisiologia , Tuberculose/microbiologia
2.
Immunol Cell Biol ; 98(9): 743-756, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32623755

RESUMO

Brucellosis is a contagious disease caused by bacteria of the genus Brucella. Platelets (PLTs) have been widely involved in the modulation of the immune response. We have previously reported the modulation of Brucella abortus-mediated infection of monocytes. As a result, PLTs cooperate with monocytes and increase their inflammatory capacity, promoting the resolution of the infection. Extending these results, in this study we demonstrate that patients with brucellosis present slightly elevated levels of complexes between PLTs and both monocytes and neutrophils. We then assessed whether PLTs were capable of modulating functional aspects of neutrophils. The presence of PLTs throughout neutrophil infection increased the production of interleukin-8, CD11b surface expression and reactive oxygen species formation, whereas it decreased the expression of CD62L, indicating an activated status of these cells. We next analyzed whether this modulation was mediated by released factors. To discriminate between these options, neutrophils were treated with supernatants collected from B. abortus-infected PLTs. Our results show that CD11b expression was induced by soluble factors of PLTs but direct contact between cell populations was needed to enhance the respiratory burst. Additionally, B. abortus-infected PLTs recruit polymorphonuclear (PMN) cells to the site of infection. Finally, the presence of PLTs did not modify the initial invasion of PMN cells by B. abortus but improved the control of the infection at extended times. Altogether, our results demonstrate that PLTs interact with neutrophils and promote a proinflammatory phenotype which could also contribute to the resolution of the infection.


Assuntos
Plaquetas/microbiologia , Brucella abortus , Brucelose , Monócitos/imunologia , Neutrófilos/imunologia , Humanos
3.
PLoS Pathog ; 13(8): e1006527, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28767704

RESUMO

Despite eliciting a potent CD8+ T cell response, Brucella abortus is able to persist and establish a chronic infection inside its host. We have previously reported that the infection of human monocytes/macrophages with B. abortus inhibits the IFN-γ-induced MHC-I cell surface expression down-modulating cytotoxic CD8+ T cell responses. MHC-I down-modulation depends on bacterial viability and results from the capacity of B. abortus to retain the MHC-I molecules within the Golgi apparatus. Furthermore, we recently demonstrated that epidermal growth factor receptor (EGFR) pathway is involved in this phenomenon and that this is an early event during infection. However, the components and mechanisms whereby B. abortus is able to down-modulate MHC-I remained to be elucidated. In this study we demonstrated that the down-modulation of MHC-I expression is not mediated by well-known Brucella virulence factors but instead by B. abortus RNA, a PAMP associated to viability (vita-PAMP). Surprisingly, completely degraded RNA was also able to inhibit MHC-I expression to the same extent as intact RNA. Accordingly, B. abortus RNA and its degradation products were able to mimic the MHC-I intracellular retention within the Golgi apparatus observed upon infection. We further demonstrated that TLR8, a single-stranded RNA and RNA degradation products sensor, was involved in MHC-I inhibition. On the other hand, neutralization of the EGFR reversed the MHC-I inhibition, suggesting a connection between the TLR8 and EGFR pathways. Finally, B. abortus RNA-treated macrophages display diminished capacity of antigen presentation to CD8+ T cells. Overall, our results indicate that the vita-PAMP RNA as well as its degradation products constitute novel virulence factors whereby B. abortus, by a TLR8-dependent mechanism and through the EGFR pathway, inhibits the IFN-γ-induced MHC-I surface expression on human monocytes/macrophages. Thus, bacteria can hide within infected cells and avoid the immunological surveillance of cytotoxic CD8+ T cells.


Assuntos
Brucelose/imunologia , Receptores ErbB/imunologia , Evasão da Resposta Imune/imunologia , Monócitos/imunologia , RNA Bacteriano/imunologia , Receptor 8 Toll-Like/imunologia , Animais , Brucella abortus/imunologia , Apresentação Cruzada/imunologia , Regulação para Baixo , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Antígenos de Histocompatibilidade Classe I/biossíntese , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Monócitos/microbiologia , Transdução de Sinais/imunologia
4.
J Immunol ; 196(9): 3794-805, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-26983788

RESUMO

Blood-brain barrier activation and/or dysfunction are a common feature of human neurobrucellosis, but the underlying pathogenic mechanisms are largely unknown. In this article, we describe an immune mechanism for inflammatory activation of human brain microvascular endothelial cells (HBMEC) in response to infection with Brucella abortus Infection of HBMEC with B. abortus induced the secretion of IL-6, IL-8, and MCP-1, and the upregulation of CD54 (ICAM-1), consistent with a state of activation. Culture supernatants (CS) from glial cells (astrocytes and microglia) infected with B. abortus also induced activation of HBMEC, but to a greater extent. Although B. abortus-infected glial cells secreted IL-1ß and TNF-α, activation of HBMEC was dependent on IL-1ß because CS from B. abortus-infected astrocytes and microglia deficient in caspase-1 and apoptosis-associated speck-like protein containing a CARD failed to induce HBMEC activation. Consistently, treatment of CS with neutralizing anti-IL-1ß inhibited HBMEC activation. Both absent in melanoma 2 and Nod-like receptor containing a pyrin domain 3 are partially required for caspase-1 activation and IL-1ß secretion, suggesting that multiple apoptosis-associated speck-like protein containing CARD-dependent inflammasomes contribute to IL-1ß-induced activation of the brain microvasculature. Inflammasome-mediated IL-1ß secretion in glial cells depends on TLR2 and MyD88 adapter-like/TIRAP. Finally, neutrophil and monocyte migration across HBMEC monolayers was increased by CS from Brucella-infected glial cells in an IL-1ß-dependent fashion, and the infiltration of neutrophils into the brain parenchyma upon intracranial injection of B. abortus was diminished in the absence of Nod-like receptor containing a pyrin domain 3 and absent in melanoma 2. Our results indicate that innate immunity of the CNS set in motion by B. abortus contributes to the activation of the blood-brain barrier in neurobrucellosis and IL-1ß mediates this phenomenon.


Assuntos
Encéfalo/imunologia , Brucella abortus/imunologia , Brucelose/imunologia , Neuroglia/imunologia , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Barreira Hematoencefálica/patologia , Encéfalo/microbiologia , Proteínas Adaptadoras de Sinalização CARD , Movimento Celular , Células Cultivadas , Feminino , Humanos , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microvasos/patologia , Neuroglia/microbiologia
5.
J Immunol ; 196(10): 4014-29, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-27084100

RESUMO

In this study, we demonstrate that the unlipidated (U) outer membrane protein (Omp) 19 from Brucella spp. is a competitive inhibitor of human cathepsin L. U-Omp19 inhibits lysosome cathepsins and APC-derived microsome activity in vitro and partially inhibits lysosomal cathepsin L activity within live APCs. Codelivery of U-Omp19 with the Ag can reduce intracellular Ag digestion and increases Ag half-life in dendritic cells (DCs). U-Omp19 retains the Ag in Lamp-2(+) compartments after its internalization and promotes a sustained expression of MHC class I/peptide complexes in the cell surface of DCs. Consequently, U-Omp19 enhances Ag cross-presentation by DCs to CD8(+) T cells. U-Omp19 s.c. delivery induces the recruitment of CD11c(+)CD8α(+) DCs and monocytes to lymph nodes whereas it partially limits in vivo Ag proteolysis inside DCs. Accordingly, this protein is able to induce CD8(+) T cell responses in vivo against codelivered Ag. Antitumor responses were elicited after U-Omp19 coadministration, increasing survival of mice in a murine melanoma challenge model. Collectively, these results indicate that a cysteine protease inhibitor from bacterial origin could be a suitable component of vaccine formulations against tumors.


Assuntos
Antígenos de Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Brucella/imunologia , Brucelose/imunologia , Linfócitos T CD8-Positivos/fisiologia , Vacinas Anticâncer/imunologia , Catepsinas/metabolismo , Células Dendríticas/imunologia , Imunoterapia/métodos , Lipoproteínas/metabolismo , Lisossomos/metabolismo , Melanoma/terapia , Animais , Antígenos de Neoplasias/imunologia , Apresentação Cruzada , Feminino , Ativação Linfocitária , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Melanoma/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
6.
Glia ; 65(7): 1137-1151, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28398652

RESUMO

Inflammation has long been implicated as a contributor to pathogenesis in neurobrucellosis. Many of the associated neurocognitive symptoms of neurobrucellosis may be the result of neuronal dysfunction resulting from the inflammatory response induced by Brucella abortus infection in the central nervous system. In this manuscript, we describe an immune mechanism for inflammatory activation of microglia that leads to neuronal death upon B. abortus infection. B. abortus was unable to infect or harm primary cultures of mouse neurons. However, when neurons were co-cultured with microglia and infected with B. abortus significant neuronal loss occurred. This phenomenon was dependent on TLR2 activation by Brucella lipoproteins. Neuronal death was not due to apoptosis, but it was dependent on the microglial release of nitric oxide (NO). B. abortus infection stimulated microglial proliferation, phagocytic activity and engulfment of neurons. NO secreted by B. abortus-activated microglia induced neuronal exposure of the "eat-me" signal phosphatidylserine (PS). Blocking of PS-binding to protein milk fat globule epidermal growth factor-8 (MFG-E8) or microglial vitronectin receptor-MFG-E8 interaction was sufficient to prevent neuronal loss by inhibiting microglial phagocytosis without affecting their activation. Taken together, our results indicate that B. abortus is not directly toxic to neurons; rather, these cells become distressed and are killed by phagocytosis in the inflammatory surroundings generated by infected microglia. Neuronal loss induced by B. abortus-activated microglia may explain, in part, the neurological deficits observed during neurobrucellosis.


Assuntos
Brucella abortus/patogenicidade , Morte Celular/fisiologia , Inflamação/metabolismo , Microglia/microbiologia , Microglia/fisiologia , Neurônios/patologia , Fagocitose/fisiologia , Animais , Antígenos de Bactérias/toxicidade , Proteínas da Membrana Bacteriana Externa/toxicidade , Morte Celular/genética , Células Cultivadas , Embrião de Mamíferos , Regulação Bacteriana da Expressão Gênica/fisiologia , Inflamação/induzido quimicamente , Inflamação/patologia , Lipopolissacarídeos/farmacologia , Lipoproteínas/metabolismo , Lipoproteínas/toxicidade , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , Óxido Nítrico/metabolismo , Prosencéfalo/citologia , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/deficiência , Receptor 4 Toll-Like/genética
7.
Immunol Cell Biol ; 95(4): 388-398, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27811842

RESUMO

Brucella abortus is able to persist inside the host despite the development of potent CD8+ T-cell responses. We have recently reported the ability of B. abortus to inhibit the interferon-γ-induced major histocompatibility complex (MHC)-I cell surface expression on human monocytes. This phenomenon was due to the B. abortus-mediated retention of MHC-I molecules within the Golgi apparatus and was dependent on bacterial viability. However, the implications of bacterial virulence or replicative capacity and the signaling pathways remained unknown. Here we demonstrated that the B. abortus mutant strains RB51 and virB10- are able to inhibit MHC-I expression in the same manner as wild-type B. abortus, even though they are unable to persist inside human monocytes for a long period of time. Consistent with this, the phenomenon was triggered early in time and could be observed at 8 h postinfection. At 24 and 48 h, it was even stronger. Regarding the signaling pathway, targeting epidermal growth factor (EGF) receptor (EGFR), ErbB2 (HER2) or inhibition of tumor necrosis factor-α-converting enzyme, one of the enzymes which generates soluble EGF-like ligands, resulted in partial recovery of MHC-I surface expression. Moreover, recombinant EGF and transforming growth factor-α as well as the combination of both were also able to reproduce the B. abortus-induced MHC-I downmodulation. Finally, when infection was performed in the presence of an extracellular signal-regulated kinase 1/2 (Erk1/2) inhibitor, MHC-I surface expression was significantly recovered. Overall, these results describe how B. abortus evades CD8+ T-cell responses early during infection and exploits the EGFR-ERK signaling pathway to escape from the immune system and favor chronicity.


Assuntos
Brucella abortus/imunologia , Brucelose/imunologia , Linfócitos T CD8-Positivos/imunologia , Receptores ErbB/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Monócitos/imunologia , Animais , Brucella abortus/patogenicidade , Brucelose/microbiologia , Linfócitos T CD8-Positivos/microbiologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Evasão da Resposta Imune , Camundongos , Camundongos Endogâmicos C57BL , Microbiologia , Transdução de Sinais , Células THP-1 , Regulação para Cima
8.
Infect Immun ; 83(5): 1973-82, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25733519

RESUMO

Human brucellosis is a protean disease with a diversity of clinical signs and symptoms resulting from infection with Brucella species. Recent reports suggest a cross-regulation between adrenal steroids (cortisol and dehydroepiandrosterone [DHEA]) and the immune system. Monocytes and macrophages are the main replication niche for Brucella. Therefore, we investigated the role of adrenal hormones on the modulation of the immune response mediated by macrophages in B. abortus infection. Cortisol treatment during B. abortus infection significantly inhibits cytokine, chemokine, and MMP-9 secretion. In contrast, DHEA treatment had no effect. However, DHEA treatment increases the expression of costimulatory molecules (CD40, CD86), the adhesion molecule CD54, and major histocompatibility complex class I (MHC-I) and MHC-II expression on the surface of B. abortus-infected monocytes. It is known that B. abortus infection inhibits MHC-I and MHC-II expression induced by gamma interferon (IFN-γ) treatment. DHEA reverses B. abortus downmodulation of the MHC-I and -II expression induced by IFN-γ. Taken together, our data indicate that DHEA immune intervention may positively affect monocyte activity during B. abortus infection.


Assuntos
Brucella abortus/imunologia , Brucelose/imunologia , Citocinas/metabolismo , Desidroepiandrosterona/metabolismo , Hidrocortisona/metabolismo , Fatores Imunológicos/metabolismo , Monócitos/imunologia , Adulto , Humanos , Masculino , Pessoa de Meia-Idade , Monócitos/microbiologia
9.
Infect Immun ; 82(2): 626-39, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24478078

RESUMO

Alveolar macrophages (AM) seem to constitute the main cellular target of inhaled brucellae. Here, we show that Brucella abortus invades and replicates in murine AM without inducing cytotoxicity. B. abortus infection induced a statistically significant increase of tumor necrosis factor alpha (TNF-α), CXCL1 or keratinocyte chemoattractant (KC), interleukin-1ß (IL-1ß), IL-6, and IL-12 in AM from C57BL/6 mice and BALB/c mice, but these responses were generally weaker and/or delayed compared to those elicited in peritoneal macrophages. Studies using knockout mice for TLR2, TLR4, and TLR9 revealed that TNF-α and KC responses were mediated by TLR2 recognition. Brucella infection reduced in a multiplicity of infection-dependent manner the expression of major histocompatibility complex class II (MHC-II) molecules induced by gamma interferon (IFN-γ) in AM. The same phenomenon was induced by incubation with heat-killed B. abortus (HKBA) or the lipidated form of the 19-kDa outer membrane protein of Brucella (L-Omp19), and it was shown to be mediated by TLR2 recognition. In contrast, no significant downregulation of MHC-II was induced by either unlipidated Omp19 or Brucella LPS. In a functional assay, treatment of AM with either L-Omp19 or HKBA reduced the MHC-II-restricted presentation of OVA peptides to specific T cells. One week after intratracheal infection, viable B. abortus was detected in AM from both wild-type and TLR2 KO mice, but CFU counts were higher in the latter. These results suggest that B. abortus survives in AM after inhalatory infection in spite of a certain degree of immune control exerted by the TLR2-mediated inflammatory response. Both the modest nature of the latter and the modulation of MHC-II expression by the bacterium may contribute to such survival.


Assuntos
Brucella abortus/imunologia , Antígenos de Histocompatibilidade Classe II/biossíntese , Antígenos de Histocompatibilidade Classe II/imunologia , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/microbiologia , Receptor 2 Toll-Like/imunologia , Receptor 2 Toll-Like/metabolismo , Animais , Citocinas/metabolismo , Regulação para Baixo , Feminino , Evasão da Resposta Imune , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Viabilidade Microbiana , Receptor 2 Toll-Like/genética
10.
Cell Microbiol ; 15(4): 487-502, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23107169

RESUMO

Brucella abortus elicits a vigorous Th1 immune response which activates cytotoxic T lymphocytes. However, B. abortus persists in its hosts in the presence of CD8(+) T cells, establishing a chronic infection. Here, we report that B. abortus infection of human monocytes/macrophages inhibited the IFN-γ-induced MHC-I cell surface expression. This phenomenon was dependent on metabolically active viable bacteria. MHC-I down-modulation correlated with the development of diminished CD8(+) cytotoxic T cell response as evidenced by the reduced expression of the activation marker CD107a on CD8(+) T lymphocytes and a diminished percentage of IFN-γ-producing CD8(+) T cells. Inhibition of MHC-I expression was not due to changes in protein synthesis. Rather, we observed that upon B. abortus infection MHC-I molecules were retained within the Golgi apparatus. Overall, these results describe a novel mechanism based on the intracellular sequestration of MHC-I molecules whereby B. abortus would avoid CD8(+) cytotoxic T cell responses, evading their immunological surveillance.


Assuntos
Brucella abortus/imunologia , Brucella abortus/fisiologia , Linfócitos T CD8-Positivos/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Evasão da Resposta Imune , Macrófagos/imunologia , Macrófagos/microbiologia , Células Cultivadas , Complexo de Golgi/química , Humanos , Interferon gama/metabolismo , Transporte Proteico
11.
PLoS One ; 19(7): e0306429, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38980867

RESUMO

Brucella abortus (Ba) is a pathogen that survives inside macrophages. Despite being its preferential niche, Ba infects other cells, as shown by the multiple signs and symptoms humans present. This pathogen can evade our immune system. Ba displays a mechanism of down-modulating MHC-I on monocytes/macrophages in the presence of IFN-γ (when Th1 response is triggered) without altering the total expression of MHC-I. The retained MHC-I proteins are located within the Golgi Apparatus (GA). The RNA of Ba is one of the PAMPs that trigger this phenomenon. However, we acknowledged whether this event could be triggered in other cells relevant during Ba infection. Here, we demonstrate that Ba RNA reduced the surface expression of MHC-I induced by IFN-γ in the human bronchial epithelium (Calu-6), the human alveolar epithelium (A-549) and the endothelial microvasculature (HMEC) cell lines. In Calu-6 and HMEC cells, Ba RNA induces the retention of MHC-I in the GA. This phenomenon was not observed in A-549 cells. We then evaluated the effect of Ba RNA on the secretion of IL-8, IL-6 and MCP-1, key cytokines in Ba infection. Contrary to our expectations, HMEC, Calu-6 and A-549 cells treated with Ba RNA had higher IL-8 and IL-6 levels compared to untreated cells. In addition, we showed that Ba RNA down-modulates the MHC-I surface expression induced by IFN-γ on human monocytes/macrophages via the pathway of the Epidermal Growth Factor Receptor (EGFR). So, cells were stimulated with an EGFR ligand-blocking antibody (Cetuximab) and Ba RNA. Neutralization of the EGFR to some extent reversed the down-modulation of MHC-I mediated by Ba RNA in HMEC and A-549 cells. In conclusion, this is the first study exploring a central immune evasion strategy, such as the downregulation of MHC-I surface expression, beyond monocytes and could shed light on how it persists effectively within the host, enduring unseen and escaping CD8+ T cell surveillance.


Assuntos
Brucella abortus , Células Endoteliais , Células Epiteliais , Antígenos de Histocompatibilidade Classe I , Interferon gama , Humanos , Interferon gama/metabolismo , Interferon gama/farmacologia , Células Endoteliais/metabolismo , Células Endoteliais/microbiologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/imunologia , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Células Epiteliais/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , RNA Bacteriano/genética , Linhagem Celular , Regulação para Baixo/efeitos dos fármacos , Receptores ErbB/metabolismo , Brucelose/imunologia , Brucelose/metabolismo , Brucelose/microbiologia , Brucelose/genética , Complexo de Golgi/metabolismo , Macrófagos/metabolismo , Macrófagos/imunologia , Macrófagos/microbiologia , Monócitos/metabolismo , Monócitos/imunologia , Monócitos/efeitos dos fármacos
12.
Infect Immun ; 81(6): 1940-51, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23509146

RESUMO

Arthritis is one of the most common complications of human active brucellosis, but its pathogenic mechanisms have not been completely elucidated. In this paper, we describe the role of synoviocytes in the pathogenesis of brucellar arthritis. Our results indicate that Brucella abortus infection inhibited synoviocyte apoptosis through the upregulation of antiapoptotic factors (cIAP-2, clusterin, livin, and P21/CIP/CDNK1A). In contrast, infection did not change the expression of proteins that have been involved in apoptosis induction such as Bad, Bax, cleaved procaspase 3, CytC, and TRAIL, among others; or their expression was reduced, as occurs in the case of P-p53(S15). In addition, B. abortus infection induced upregulation of adhesion molecules (CD54 and CD106), and the adhesion of monocytes and neutrophils to infected synoviocytes was significantly higher than to uninfected cells. Despite this increased adhesion, B. abortus-infected synoviocytes were able to inhibit apoptosis induced by supernatants from B. abortus-infected monocytes and neutrophils. Moreover, B. abortus infection increased soluble and membrane RANKL expression in synoviocytes that further induced monocytes to undergo osteoclastogenesis. The results presented here shed light on how the interactions of B. abortus with synovial fibroblasts may have an important role in the pathogenesis of brucellar arthritis.


Assuntos
Apoptose/fisiologia , Brucella abortus/fisiologia , Fibroblastos/microbiologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Ligante RANK/metabolismo , Membrana Sinovial/citologia , Antígenos CD/metabolismo , Reabsorção Óssea/metabolismo , Adesão Celular , Células Cultivadas , Fibroblastos/citologia , Humanos , Osteoclastos/metabolismo , Osteoclastos/microbiologia , Ligante RANK/genética , Regulação para Cima
13.
J Neuroinflammation ; 10: 47, 2013 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-23587438

RESUMO

BACKGROUND: Central nervous system (CNS) invasion by bacteria of the genus Brucella results in an inflammatory disorder called neurobrucellosis. We have recently demonstrated that B. abortus infects microglia and astrocytes, eliciting the production of a variety of pro-inflammatory cytokines which contribute to CNS damage. Matrix metalloproteinases (MMP) have been implicated in inflammatory tissue destruction in a range of pathological situations in the CNS. Increased MMP secretion is induced by pro-inflammatory cytokines in a variety of CNS diseases characterized by tissue-destructive pathology. METHODS: In this study, the molecular mechanisms that regulate MMP secretion from Brucella-infected astrocytes in vitro were investigated. MMP-9 was evaluated in culture supernatants by ELISA, zymography and gelatinolytic activity. Involvement of mitogen-activated protein kinases (MAPK) signaling pathways was evaluated by Western blot and using specific inhibitors. The role of TNF-α was evaluated by ELISA and by assays with neutralizing antibodies. RESULTS: B. abortus infection induced the secretion of MMP-9 from murine astrocytes in a dose-dependent fashion. The phenomenon was independent of bacterial viability and was recapitulated by L-Omp19, a B. abortus lipoprotein model, but not its LPS. B. abortus and L-Omp19 readily activated p38 and Erk1/2 MAPK, thus enlisting these pathways among the kinase pathways that the bacteria may address as they invade astrocytes. Inhibition of p38 or Erk1/2 significantly diminished MMP-9 secretion, and totally abrogated production of this MMP when both MAPK pathways were inhibited simultaneously. A concomitant abrogation of B. abortus- and L-Omp19-induced TNF-α production was observed when p38 and Erk1/2 pathways were inhibited, indicating that TNF-α could be implicated in MMP-9 secretion. MMP-9 secretion induced by B. abortus or L-Omp19 was completely abrogated when experiments were conducted in the presence of a TNF-α neutralizing antibody. MMP-9 activity was detected in cerebrospinal fluid (CSF) samples from patients suffering from neurobrucellosis. CONCLUSIONS: Our results indicate that the inflammatory response elicited by B. abortus in astrocytes would lead to the production of MMP-9 and that MAPK may play a role in this phenomenon. MAPK inhibition may thus be considered as a strategy to control inflammation and CNS damage in neurobrucellosis.


Assuntos
Brucella abortus , Brucelose/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Proteínas Quinases Ativadas por Mitógeno/fisiologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/fisiologia , Animais , Anticorpos Bloqueadores/farmacologia , Antígenos de Bactérias/fisiologia , Astrócitos/metabolismo , Astrócitos/microbiologia , Astrócitos/fisiologia , Proteínas da Membrana Bacteriana Externa/fisiologia , Citocinas/metabolismo , Gelatinases/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/fisiologia , Lipopolissacarídeos/farmacologia , Lipoproteínas/farmacologia , Lipoproteínas/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Cultura Primária de Células , Transdução de Sinais/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologia
14.
Front Cell Infect Microbiol ; 13: 1252509, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38249298

RESUMO

Clostridioides difficile is the main causative agent of hospital-acquired diarrhea and the potentially lethal disease, C. difficile infection. The cornerstone of the current therapy is the use of antibiotics, which is not fully effective. The molecular mechanisms, inflammatory conditions and host-immune responses that could benefit the persistence or elimination of C. difficile remain unclear. Macrophages perform different ways of endocytosis as part of their immune surveillance functions and platelets, classically known for their coagulatory role, are also important modulators of the immune system. The aim of this study was to evaluate the endocytosis of vegetative C. difficile by human macrophages and the involvement of platelets in this process. Our results showed that both macrophages and platelets interact with live and heat-killed C. difficile. Furthermore, platelets form complexes with human monocytes in healthy donor's fresh blood and the presence of C. difficile increased these cell-cell interactions. Using flow cytometry and confocal microscopy, we show that macrophages can internalize C. difficile and that platelets improve this uptake. By using inhibitors of different endocytic pathways, we demonstrate that macropinocytosis is the route of entry of C. difficile into the cell. Taken together, our findings are the first evidence for the internalization of vegetative non-toxigenic and hypervirulent C. difficile by human macrophages and highlight the role of platelets in innate immunity during C. difficile infection. Deciphering the crosstalk of C. difficile with immune cells could provide new tools for understanding the pathogenesis of C. difficile infection and for the development of host-directed therapies.


Assuntos
Clostridioides difficile , Humanos , Clostridioides , Plaquetas , Macrófagos , Pinocitose
15.
Infect Immun ; 80(7): 2333-45, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22547546

RESUMO

Osteoarticular brucellosis is the most common presentation of the active disease in humans. Loss of bone is a serious complication of localized bacterial infection of bones or the adjacent tissue, and brucellosis proved not to be the exception. The skeleton is a dynamic organ system which is constantly remodeled. Osteoblasts are responsible for the deposition of bone matrix and are thought to facilitate the calcification and mineralization of the bone matrix, and their function could be altered under infectious conditions. In this article, we describe immune mechanisms whereby Brucella abortus may invade and replicate within osteoblasts, inducing apoptosis, inhibiting mineral and organic matrix deposition, and inducing upregulation of RANKL expression. Additionally, all of these mechanisms contributed in different ways to bone loss. These processes implicate the activation of signaling pathways (mitogen-activated protein kinases [MAPK] and caspases) involved in cytokine secretion, expression of activating molecules, and cell death of osteoblasts. In addition, considering the relevance of macrophages in intracellular Brucella survival and proinflammatory cytokine secretion in response to infection, we also investigated the role of these cells as modulators of osteoblast survival, differentiation, and function. We demonstrated that supernatants from B. abortus-infected macrophages may also mediate osteoblast apoptosis and inhibit osteoblast function in a process that is dependent on the presence of tumor necrosis factor alpha (TNF-α). These results indicate that B. abortus may directly and indirectly harm osteoblast function, contributing to the bone and joint destruction observed in patients with osteoarticular complications of brucellosis.


Assuntos
Apoptose , Brucella abortus/patogenicidade , Osteoblastos/metabolismo , Osteoblastos/microbiologia , Osteogênese , Animais , Células Cultivadas , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos
16.
J Immunol ; 184(9): 5200-12, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-20351187

RESUMO

Knowing the inherent stimulatory properties of the lipid moiety of bacterial lipoproteins, we first hypothesized that Brucella abortus outer membrane protein (Omp)16 lipoprotein would be able to elicit a protective immune response without the need of external adjuvants. In this study, we demonstrate that Omp16 administered by the i.p. route confers significant protection against B. abortus infection and that the protective response evoked is independent of the protein lipidation. To date, Omp16 is the first Brucella protein that without the requirement of external adjuvants is able to induce similar protection levels to the control live vaccine S19. Moreover, the protein portion of Omp16 (unlipidated Omp16 [U-Omp16]) elicits a protective response when administered by the oral route. Either systemic or oral immunization with U-Omp16 elicits a Th1-specific response. These abilities of U-Omp16 indicate that it is endowed with self-adjuvanting properties. The adjuvanticity of U-Omp16 could be explained, at least in part, by its capacity to activate dendritic cells in vivo. U-Omp16 is also able to stimulate dendritic cells and macrophages in vitro. The latter property and its ability to induce a protective Th1 immune response against B. abortus infection have been found to be TLR4 dependent. The facts that U-Omp16 is an oral protective Ag and possesses a mucosal self-adjuvanting property led us to develop a plant-made vaccine expressing U-Omp16. Our results indicate that plant-expressed recombinant U-Omp16 is able to confer protective immunity, when given orally, indicating that a plant-based oral vaccine expressing U-Omp16 could be a valuable approach to controlling this disease.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Vacina contra Brucelose/imunologia , Brucelose/prevenção & controle , Células Dendríticas/imunologia , Interações Hospedeiro-Patógeno/imunologia , Células Th1/imunologia , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/genética , Administração Oral , Animais , Antígenos de Bactérias/administração & dosagem , Proteínas da Membrana Bacteriana Externa/administração & dosagem , Proteínas da Membrana Bacteriana Externa/biossíntese , Proteínas da Membrana Bacteriana Externa/genética , Vacina contra Brucelose/administração & dosagem , Brucelose/imunologia , Diferenciação Celular/imunologia , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Feminino , Adjuvante de Freund/administração & dosagem , Interações Hospedeiro-Patógeno/genética , Imunidade Celular , Injeções Intraperitoneais , Lipídeos/administração & dosagem , Lipoproteínas/administração & dosagem , Lipoproteínas/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Th1/microbiologia , Nicotiana/genética , Nicotiana/imunologia
17.
PLoS Negl Trop Dis ; 16(11): e0010950, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36441810

RESUMO

Monocytes and macrophages play a central role in chronic brucellosis. Brucella abortus (Ba) is an intracellular pathogen that survives inside these cells. On the other hand, macrophages could be differentiated into classical (M1), alternative (M2) or other less-identified profiles. We have previously shown that Ba RNA (a bacterial viability-associated PAMP or vita-PAMP) is a key molecule by which Ba can evade the host immune response. However, we did not know if macrophages could be polarized by this vita-PAMP. To assess this, we used two different approaches: we evaluated if Ba RNA per se was able to differentiate macrophages to M1 or M2 or, given that Ba survives inside macrophages once a Th1 response is established (i.e., in the presence of IFN-γ), we also analysed if Ba RNA could interfere with M1 polarization. We found that Ba RNA alone does not polarize to M1 or M2 but activates human macrophages instead. However, our results show that Ba RNA does interfere with M1 polarization while they are being differentiated. This vita-PAMP diminished the M1-induced CD64, and MHC-II surface expression on macrophages at 48 h. This phenomenon was not associated with an alternative activation of these cells (M2), as shown by unchanged CD206, DC-SIGN and CD163 surface expression. When evaluating glucose metabolism, we found that Ba RNA did not modify M1 glucose consumption or lactate production. However, production of Nitrogen Reactive Species (NRS) did diminish in Ba RNA-treated M1 macrophages. Overall, our results show that Ba RNA could alter the proper immune response set to counterattack the bacteria that could persist in the host establishing a chronic infection.


Assuntos
Brucella abortus , RNA , Humanos , Brucella abortus/genética
18.
Infect Immun ; 79(1): 192-202, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20956574

RESUMO

Osteoarticular complications are common in human brucellosis, but the pathogenic mechanisms involved are largely unknown. Since matrix metalloproteinases (MMPs) are involved in joint and bone damage in inflammatory and infectious diseases, we investigated the production of MMPs by human osteoblasts and monocytes, either upon Brucella abortus infection or upon reciprocal stimulation with factors produced by each infected cell type. B. abortus infection of the normal human osteoblastic cell line hFOB 1.19 triggered a significant release of MMP-2, which was mediated in part by granulocyte-macrophage colony-stimulating factor (GM-CSF) acting on these same cells. Supernatants from infected osteoblasts exhibited increased levels of monocyte chemoattractant protein 1 and induced the migration of human monocytes (THP-1 cell line). Infection with B. abortus induced a high MMP-9 secretion in monocytes, which was also induced by heat-killed B. abortus and by the Omp19 lipoprotein from B. abortus. These effects were mediated by Toll-like receptor 2 and by the action of tumor necrosis factor alpha (TNF-α) produced by these same cells. Supernatants from B. abortus-infected monocytes induced MMP-2 secretion in uninfected osteoblasts, and this effect was mediated by TNF-α. Similarly, supernatants from infected osteoblasts induced MMP-9 secretion in uninfected monocytes. This effect was mediated by GM-CSF, which induced TNF-α production by monocytes, which in turn induced MMP-9 in these cells. These results suggest that MMPs could be potentially involved in the tissue damage observed in osteoarticular brucellosis.


Assuntos
Brucella abortus/fisiologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Metaloproteinases da Matriz/metabolismo , Monócitos/microbiologia , Osteoblastos/microbiologia , Fator de Necrose Tumoral alfa/metabolismo , Linhagem Celular , Regulação da Expressão Gênica/fisiologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Humanos , Monócitos/metabolismo , Osteoblastos/metabolismo
19.
Infect Immun ; 79(9): 3619-32, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21730088

RESUMO

Arthritis is one of the most common complications of human brucellosis, but its pathogenic mechanisms have not been elucidated. Fibroblast-like synoviocytes (FLS) are known to be central mediators of joint damage in inflammatory arthritides through the production of matrix metalloproteinases (MMPs) that degrade collagen and of cytokines and chemokines that mediate the recruitment and activation of leukocytes. In this study we show that Brucella abortus infects and replicates in human FLS (SW982 cell line) in vitro and that infection results in the production of MMP-2 and proinflammatory mediators (interleukin-6 [IL-6], IL-8, monocyte chemotactic protein 1 [MCP-1], and granulocyte-macrophage colony-stimulating factor [GM-CSF]). Culture supernatants from Brucella-infected FLS induced the migration of monocytes and neutrophils in vitro and also induced these cells to secrete MMP-9 in a GM-CSF- and IL-6-dependent fashion, respectively. Reciprocally, culture supernatants from Brucella-infected monocytes and neutrophils induced FLS to produce MMP-2 in a tumor necrosis factor alpha (TNF-α)-dependent fashion. The secretion of proinflammatory mediators and MMP-2 by FLS did not depend on bacterial viability, since it was also induced by heat-killed B. abortus (HKBA) and by a model Brucella lipoprotein (L-Omp19). These responses were mediated by the recognition of B. abortus antigens through Toll-like receptor 2. The intra-articular injection of HKBA or L-Omp19 into the knee joint of mice resulted in the local induction of the proinflammatory mediators MMP-2 and MMP-9 and in the generation of a mixed inflammatory infiltrate. These results suggest that FLS, and phagocytes recruited by them to the infection focus, may be involved in joint damage during brucellar arthritis through the production of MMPs and proinflammatory mediators.


Assuntos
Artrite Infecciosa/imunologia , Brucella abortus/imunologia , Brucelose/imunologia , Articulações/microbiologia , Articulações/patologia , Metaloproteinases da Matriz/biossíntese , Membrana Sinovial/imunologia , Animais , Antígenos de Bactérias/imunologia , Artrite Infecciosa/enzimologia , Artrite Infecciosa/microbiologia , Artrite Infecciosa/patologia , Proteínas da Membrana Bacteriana Externa/imunologia , Brucella abortus/crescimento & desenvolvimento , Brucella abortus/patogenicidade , Brucelose/enzimologia , Brucelose/microbiologia , Brucelose/patologia , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Quimiocinas/biossíntese , Meios de Cultivo Condicionados , Citocinas/biossíntese , Citocinas/metabolismo , Indução Enzimática , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Articulação do Joelho/microbiologia , Lipoproteínas/imunologia , Ativação Linfocitária , Metaloproteinases da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Monócitos/fisiologia , Neutrófilos/fisiologia , Membrana Sinovial/citologia , Membrana Sinovial/microbiologia , Receptor 2 Toll-Like/metabolismo
20.
Am J Pathol ; 176(3): 1323-38, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20093491

RESUMO

Central nervous system (CNS) invasion by bacteria of the genus Brucella results in an inflammatory disorder called neurobrucellosis. In this study we present in vivo and in vitro evidence that B. abortus and its lipoproteins activate the innate immunity of the CNS, eliciting an inflammatory response that leads to astrogliosis, a characteristic feature of neurobrucellosis. Intracranial injection of heat-killed B. abortus (HKBA) or outer membrane protein 19 (Omp19), a B. abortus lipoprotein model, induced astrogliosis in mouse striatum. Moreover, infection of astrocytes and microglia with B. abortus induced the secretion of interleukin (IL)-6, IL-1beta, tumor necrosis factor (TNF)-alpha, macrophage chemoattractant protein-1, and KC (CXCL1). HKBA also induced these inflammatory mediators, suggesting the involvement of a structural component of the bacterium. Accordingly, Omp19 induced the same cytokine and chemokine secretion pattern. B. abortus infection induced astrocyte, but not microglia, apoptosis. Indeed, HKBA and Omp19 elicited not only astrocyte apoptosis but also proliferation, two features observed during astrogliosis. Apoptosis induced by HKBA and L-Omp19 was completely suppressed in cells of TNF receptor p55-/- mice or when the general caspase inhibitor Z-VAD-FMK was added to cultures. Hence, TNF-alpha signaling via TNF receptor (TNFR) 1 through the coupling of caspases determines apoptosis. Our results provide proof of the principle that Brucella lipoproteins could be key virulence factors in neurobrucellosis and that astrogliosis might contribute to neurobrucellosis pathogenesis.


Assuntos
Apoptose , Astrócitos/microbiologia , Astrócitos/patologia , Brucella abortus/fisiologia , Mediadores da Inflamação/metabolismo , Animais , Antígenos de Bactérias/farmacologia , Apoptose/efeitos dos fármacos , Astrócitos/enzimologia , Astrócitos/metabolismo , Proteínas da Membrana Bacteriana Externa/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/microbiologia , Encéfalo/patologia , Brucella abortus/efeitos dos fármacos , Caspases/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Quimiocinas/metabolismo , Feminino , Temperatura Alta , Imuno-Histoquímica , Lipopolissacarídeos/farmacologia , Lipoproteínas/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Microglia/efeitos dos fármacos , Microglia/microbiologia , Microglia/patologia , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA