Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Cell ; 180(5): 895-914.e27, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32142680

RESUMO

A safe and controlled manipulation of endocytosis in vivo may have disruptive therapeutic potential. Here, we demonstrate that the anti-emetic/anti-psychotic prochlorperazine can be repurposed to reversibly inhibit the in vivo endocytosis of membrane proteins targeted by therapeutic monoclonal antibodies, as directly demonstrated by our human tumor ex vivo assay. Temporary endocytosis inhibition results in enhanced target availability and improved efficiency of natural killer cell-mediated antibody-dependent cellular cytotoxicity (ADCC), a mediator of clinical responses induced by IgG1 antibodies, demonstrated here for cetuximab, trastuzumab, and avelumab. Extensive analysis of downstream signaling pathways ruled out on-target toxicities. By overcoming the heterogeneity of drug target availability that frequently characterizes poorly responsive or resistant tumors, clinical application of reversible endocytosis inhibition may considerably improve the clinical benefit of ADCC-mediating therapeutic antibodies.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/imunologia , Neoplasias/tratamento farmacológico , Proclorperazina/farmacologia , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais Humanizados/farmacologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Apresentação de Antígeno/efeitos dos fármacos , Biópsia , Cetuximab/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Resistencia a Medicamentos Antineoplásicos/genética , Endocitose/efeitos dos fármacos , Endocitose/imunologia , Xenoenxertos , Humanos , Imunoglobulina G/genética , Imunoglobulina G/imunologia , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Células MCF-7 , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Camundongos , Neoplasias/genética , Neoplasias/imunologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Trastuzumab/farmacologia
2.
Cell Microbiol ; 22(1): e13126, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31610608

RESUMO

The mouse pathogen Citrobacter rodentium is used to model infections with enterohaemorrhagic and enteropathogenic Escherichia coli (EHEC and EPEC). Pathogenesis is commonly modelled in mice developing mild disease (e.g., C57BL/6). However, little is known about host responses in mice exhibiting severe colitis (e.g., C3H/HeN), which arguably provide a more clinically relevant model for human paediatric enteric infection. Infection of C3H/HeN mice with C. rodentium results in rapid colonic colonisation, coinciding with induction of key inflammatory signatures and colonic crypt hyperplasia. Infection also induces dramatic changes to bioenergetics in intestinal epithelial cells, with transition from oxidative phosphorylation (OXPHOS) to aerobic glycolysis and higher abundance of SGLT4, LDHA, and MCT4. Concomitantly, mitochondrial proteins involved in the TCA cycle and OXPHOS were in lower abundance. Similar to observations in C57BL/6 mice, we detected simultaneous activation of cholesterol biogenesis, import, and efflux. Distinctly, however, the pattern recognition receptors NLRP3 and ALPK1 were specifically induced in C3H/HeN. Using cell-based assays revealed that C. rodentium activates the ALPK1/TIFA axis, which is dependent on the ADP-heptose biosynthesis pathway but independent of the Type III secretion system. This study reveals for the first time the unfolding intestinal epithelial cells' responses during severe infectious colitis, which resemble EPEC human infections.


Assuntos
Citrobacter rodentium/imunologia , Infecções por Enterobacteriaceae/imunologia , Interações entre Hospedeiro e Microrganismos , Inflamação/microbiologia , Mucosa Intestinal/microbiologia , Animais , Citrobacter rodentium/patogenicidade , Colite/imunologia , Colite/microbiologia , Infecções por Enterobacteriaceae/metabolismo , Feminino , Microbioma Gastrointestinal , Células HeLa , Humanos , Mucosa Intestinal/imunologia , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Proteômica , Organismos Livres de Patógenos Específicos
3.
Biochemistry ; 55(39): 5554-5565, 2016 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-27571563

RESUMO

CTP synthetases catalyze the last step of pyrimidine biosynthesis and provide the sole de novo source of cytosine-containing nucleotides. As a central regulatory hub, they are regulated by ribonucleotide and enzyme concentration through ATP and UTP substrate availability, CTP product inhibition, GTP allosteric modification, and quaternary structural changes including the formation of CTP-inhibited linear polymers (filaments). Here, we demonstrate that nicotinamide redox cofactors are moderate inhibitors of Escherichia coli CTP synthetase (EcCTPS). NADH and NADPH are the most potent, and the primary inhibitory determinant is the reduced nicotinamide ring. Although nicotinamide inhibition is noncompetitive with substrates, it apparently enhances CTP product feedback inhibition and GTP allosteric regulation. Further, CTP and GTP also enhance each other's effects, consistent with the idea that NADH, CTP, and GTP interact with a common intermediate enzyme state. A filament-blocking mutation that reduces CTP inhibitory effects also reduced inhibition by GTP but not NADH. Protein-concentration effects on GTP inhibition suggest that, like CTP, GTP preferentially binds to the filament. All three compounds display nearly linear dose-dependent inhibition, indicating a complex pattern of cooperative interactions between binding sites. The apparent synergy between inhibitors, in consideration with physiological nucleotide concentrations, points to metabolically relevant inhibition by nicotinamides, and implicates cellular redox state as a regulator of pyrimidine biosynthesis.


Assuntos
Carbono-Nitrogênio Ligases/metabolismo , Citidina Trifosfato/metabolismo , Escherichia coli/enzimologia , Guanosina Trifosfato/metabolismo , NAD/metabolismo , Cinética
4.
Hum Mol Genet ; 21(8): 1808-23, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22228095

RESUMO

Mutations in components of the intraflagellar transport (IFT) machinery required for assembly and function of the primary cilium cause a subset of human ciliopathies characterized primarily by skeletal dysplasia. Recently, mutations in the IFT-A gene IFT144 have been described in patients with Sensenbrenner and Jeune syndromes, which are associated with short ribs and limbs, polydactyly and craniofacial defects. Here, we describe an N-ethyl-N-nitrosourea-derived mouse mutant with a hypomorphic missense mutation in the Ift144 gene. The mutant twinkle-toes (Ift144(twt)) phenocopies a number of the skeletal and craniofacial anomalies seen in patients with human skeletal ciliopathies. Like other IFT-A mouse mutants, Ift144 mutant embryos display a generalized ligand-independent expansion of hedgehog (Hh) signalling, in spite of defective ciliogenesis and an attenuation of the ability of mutant cells to respond to upstream stimulation of the pathway. This enhanced Hh signalling is consistent with cleft palate and polydactyly phenotypes in the Ift144(twt) mutant, although extensive rib branching, fusion and truncation phenotypes correlate with defects in early somite patterning and may reflect contributions from multiple signalling pathways. Analysis of embryos harbouring a second allele of Ift144 which represents a functional null, revealed a dose-dependent effect on limb outgrowth consistent with the short-limb phenotypes characteristic of these ciliopathies. This allelic series of mouse mutants provides a unique opportunity to uncover the underlying mechanistic basis of this intriguing subset of ciliopathies.


Assuntos
Anormalidades Múltiplas/genética , Cílios , Anormalidades Craniofaciais/genética , Proteínas/genética , Anormalidades Múltiplas/embriologia , Anormalidades Múltiplas/metabolismo , Animais , Mapeamento Cromossômico , Cílios/fisiologia , Cílios/ultraestrutura , Anormalidades Craniofaciais/embriologia , Anormalidades Craniofaciais/metabolismo , Proteínas do Citoesqueleto , Embrião de Mamíferos , Fatores de Crescimento de Fibroblastos/metabolismo , Membro Anterior/anormalidades , Membro Anterior/metabolismo , Proteínas Hedgehog/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Mutagênese , Mutação de Sentido Incorreto , Fenótipo , Polidactilia/embriologia , Polidactilia/genética , Polidactilia/metabolismo , Proteínas/química , Costelas/anormalidades , Transdução de Sinais
5.
Sci Rep ; 14(1): 16613, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39026025

RESUMO

Investigating the gut microbiome and metabolome frequently requires faecal samples, which can be difficult to obtain. Previous studies have shown that rectal swabs are comparable to faecal samples for analysing gut microbiota composition and key metabolites. In this study, 3D printed rectal swabs were compared with conventional flocked swabs and faecal samples, due to the potential advantages 3D printing as a technique offers for swab production and development. 16S rRNA gene sequencing, qPCR and metabolite profiling (using 1H-NMR spectroscopy) were performed on swab and faecal samples from healthy participants. Faecal calprotectin and total protein analysis were performed on samples from inflammatory bowel disease (IBD) patients. There were no significant differences between both swab types and faecal samples when assessing key measures of alpha and beta diversity, and differences in the abundance of major phyla. There was a strong correlation between both swab types and faecal samples for all combined metabolites detected by NMR. In IBD patients, there was no significant difference in faecal calprotectin and total protein levels between both swab types and faecal samples. These data lead us to conclude that 3D printed swabs are equivalent to flocked swabs for the analysis of the gut microbiome, metabolome and inflammation.


Assuntos
Fezes , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Metaboloma , Impressão Tridimensional , RNA Ribossômico 16S , Humanos , Fezes/microbiologia , Doenças Inflamatórias Intestinais/microbiologia , Doenças Inflamatórias Intestinais/metabolismo , RNA Ribossômico 16S/genética , Masculino , Feminino , Adulto , Reto/microbiologia , Reto/metabolismo , Complexo Antígeno L1 Leucocitário/metabolismo , Complexo Antígeno L1 Leucocitário/análise , Inflamação/microbiologia , Inflamação/metabolismo , Pessoa de Meia-Idade , Manejo de Espécimes/métodos
6.
J Microbiol Biol Educ ; 24(1)2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37089232

RESUMO

Peer review is an important part of the scientific publishing process that serves as a key quality control step. Learning that scientific publications go through peer review builds scientific literacy and may increase trust in published findings. Though the publication and peer review process is an established part of the practice of communicating science, this topic is not commonly taught at the undergraduate level, even in classes that regularly require students to read primary literature or author manuscripts. Often, undergraduate course lessons on peer review focus on the practice of performing peer review on other students' writing rather than explaining how this process works for independent scientists publishing their novel work as primary literature articles. As a result, there is a need for more resources related to teaching about publication and peer review. This work presents a plan for out-of-class reading and an in-class lesson on peer review practices in biology. In this module, students learn the order of events in scientific publishing and consider the relationship between peer review and public trust in science by analyzing survey data. Students completing this activity reported knowledge gains related to scientific publishing and peer review and demonstrated their knowledge on an in-class assessment. Though this activity was developed for a biochemistry course, it may be implemented in various life sciences classes from introductory to advanced levels to improve student scientific literacy.

7.
STAR Protoc ; 1(2): 100087, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-33111120

RESUMO

We describe an ex vivo EGF ligand internalization assay using fresh patient tumor biopsies to determine how antigen targets will be trafficked before patients receive mAb treatment. This protocol facilitates a sensitive and reproducible indication as to mAbs surface retention times during treatment. EGF uptake protocols can also be used to analyze EGFR heterogeneity and localization of EGFR in both tumor and xenograft tissue. The technology can be adapted to analyze other receptors such as PD-L1 for which methods are provided. For complete details on the use and execution of this protocol, please refer to Joseph et al. (2019) and Chew et al. (2020).


Assuntos
Família de Proteínas EGF/farmacologia , Receptores ErbB/imunologia , Imuno-Histoquímica/métodos , Animais , Anticorpos Monoclonais , Antígeno B7-H1 , Biomarcadores Farmacológicos , Linhagem Celular Tumoral , Humanos , Ligantes , Camundongos , Neoplasias/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Mucosal Immunol ; 13(2): 322-333, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31772324

RESUMO

Given the global burden of diarrheal diseases on healthcare it is surprising how little is known about the drivers of disease severity. Colitis caused by infection and inflammatory bowel disease (IBD) is characterised by neutrophil infiltration into the intestinal mucosa and yet our understanding of neutrophil responses during colitis is incomplete. Using infectious (Citrobacter rodentium) and chemical (dextran sulphate sodium; DSS) murine colitis models, as well as human IBD samples, we find that faecal neutrophil elastase (NE) activity reflects disease severity. During C. rodentium infection intestinal epithelial cells secrete the serine protease inhibitor SerpinA3N to inhibit and mitigate tissue damage caused by extracellular NE. Mice suffering from severe infection produce insufficient SerpinA3N to control excessive NE activity. This activity contributes to colitis severity as infection of these mice with a recombinant C. rodentium strain producing and secreting SerpinA3N reduces tissue damage. Thus, uncontrolled luminal NE activity is involved in severe colitis. Taken together, our findings suggest that NE activity could be a useful faecal biomarker for assessing disease severity as well as therapeutic target for both infectious and chronic inflammatory colitis.


Assuntos
Biomarcadores/metabolismo , Citrobacter rodentium/fisiologia , Colite/metabolismo , Infecções por Enterobacteriaceae/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Elastase de Leucócito/metabolismo , Neutrófilos/imunologia , Proteínas de Fase Aguda/metabolismo , Animais , Sulfato de Dextrana , Modelos Animais de Doenças , Progressão da Doença , Fezes/química , Humanos , Camundongos , Inibidores de Proteases/metabolismo , Serpinas/metabolismo , Índice de Gravidade de Doença
9.
Nat Rev Microbiol ; 17(11): 701-715, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31541196

RESUMO

Citrobacter rodentium is an extracellular enteric mouse-specific pathogen used to model infections with human pathogenic Escherichia coli and inflammatory bowel disease. C. rodentium injects type III secretion system effectors into intestinal epithelial cells (IECs) to target inflammatory, metabolic and cell survival pathways and establish infection. While the host responds to infection by activating innate and adaptive immune signalling, required for clearance, the IECs respond by rapidly shifting bioenergetics to aerobic glycolysis, which leads to oxygenation of the epithelium, an instant expansion of mucosal-associated commensal Enterobacteriaceae and a decline of obligate anaerobes. Moreover, infected IECs reprogramme intracellular metabolic pathways, characterized by simultaneous activation of cholesterol biogenesis, import and efflux, leading to increased serum and faecal cholesterol levels. In this Review we summarize recent advances highlighting the intimate relationship between C. rodentium pathogenesis, metabolism and the gut microbiota.


Assuntos
Citrobacter rodentium/crescimento & desenvolvimento , Citrobacter rodentium/imunologia , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/microbiologia , Interações entre Hospedeiro e Microrganismos , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Imunidade Adaptativa , Aerobiose , Animais , Citrobacter rodentium/metabolismo , Metabolismo Energético , Células Epiteliais/imunologia , Células Epiteliais/patologia , Glicólise , Imunidade Inata , Camundongos , Sistemas de Secreção Tipo III/metabolismo , Fatores de Virulência/metabolismo
10.
J Invest Dermatol ; 139(1): 213-223, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30077724

RESUMO

EGFR overexpression is associated with squamous cell carcinoma development. Altered endocytosis and polarization of receptor tyrosine kinases, including EGFR, affect migration and invasion in three-dimensional culture. These studies have been completed via genetic sequencing, cell line, or three-dimensional in vitro and in vivo murine models. Here, we describe an imaging method that allows ex vivo examination of ligand-induced endocytosis of EGFR in non-dissociated human tumors. We analyzed sets of tumor samples from advanced cutaneous squamous cell carcinoma and head and neck squamous cell carcinoma, actinic keratosis, intraepidermal carcinoma, and cutaneous squamous cell carcinoma. We show that EGFR endocytosis is dysregulated in advanced SCC and correlates with anti-EGFR monoclonal antibody therapy outcomes. In actinic keratosis, intraepidermal carcinoma, and well-differentiated cutaneous squamous cell carcinoma, different patterns of epidermal growth factor ligand uptake and binding were observed at the leading edge of different dysplastic lesions, suggesting that these differences in EGFR endocytosis might influence the metastatic potential of dysplastic squamous epithelium. These studies in live ex vivo human tumors confirm that endocytosis dysregulation is a physiological event in human tumors and has therapeutic implications.


Assuntos
Carcinoma de Células Escamosas/genética , Regulação Neoplásica da Expressão Gênica , RNA Neoplásico/genética , Neoplasias Cutâneas/genética , Pele/patologia , Biópsia , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Movimento Celular , Receptores ErbB/biossíntese , Receptores ErbB/genética , Humanos , Microscopia Confocal , Reação em Cadeia da Polimerase , Pele/metabolismo , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia
11.
Nat Commun ; 9(1): 3001, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30069026

RESUMO

The NLRP3 inflammasome responds to infection and tissue damage, and rapidly escalates the intensity of inflammation by activating interleukin (IL)-1ß, IL-18 and cell death by pyroptosis. How the NLRP3 inflammasome is negatively regulated is poorly understood. Here we show that NLRP3 inflammasome activation is suppressed by sumoylation. NLRP3 is sumoylated by the SUMO E3-ligase MAPL, and stimulation-dependent NLRP3 desumoylation by the SUMO-specific proteases SENP6 and SENP7 promotes NLRP3 activation. Defective NLRP3 sumoylation, either by NLRP3 mutation of SUMO acceptor lysines or depletion of MAPL, results in enhanced caspase-1 activation and IL-1ß release. Conversely, depletion of SENP7 suppresses NLRP3-dependent ASC oligomerisation, caspase-1 activation and IL-1ß release. These data indicate that sumoylation of NLRP3 restrains inflammasome activation, and identify SUMO proteases as potential drug targets for the treatment of inflammatory diseases.


Assuntos
Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sequência de Aminoácidos , Animais , Endopeptidases/metabolismo , Células HEK293 , Humanos , Interleucina-1beta/metabolismo , Lisina/genética , Camundongos , Mutação/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/química , Ligação Proteica , Sumoilação , Ubiquitina-Proteína Ligases/metabolismo
12.
Nat Struct Mol Biol ; 24(6): 507-514, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28459447

RESUMO

The universally conserved enzyme CTP synthase (CTPS) forms filaments in bacteria and eukaryotes. In bacteria, polymerization inhibits CTPS activity and is required for nucleotide homeostasis. Here we show that for human CTPS, polymerization increases catalytic activity. The cryo-EM structures of bacterial and human CTPS filaments differ considerably in overall architecture and in the conformation of the CTPS protomer, explaining the divergent consequences of polymerization on activity. The structure of human CTPS filament, the first structure of the full-length human enzyme, reveals a novel active conformation. The filament structures elucidate allosteric mechanisms of assembly and regulation that rely on a conserved conformational equilibrium. The findings may provide a mechanism for increasing human CTPS activity in response to metabolic state and challenge the assumption that metabolic filaments are generally storage forms of inactive enzymes. Allosteric regulation of CTPS polymerization by ligands likely represents a fundamental mechanism underlying assembly of other metabolic filaments.


Assuntos
Carbono-Nitrogênio Ligases/química , Carbono-Nitrogênio Ligases/metabolismo , Substâncias Macromoleculares/química , Substâncias Macromoleculares/metabolismo , Multimerização Proteica , Microscopia Crioeletrônica , Cristalografia por Raios X , Humanos , Modelos Moleculares , Conformação Proteica
13.
Cell Rep ; 17(12): 3319-3332, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-28009299

RESUMO

Receptor tyrosine kinases exhibit a variety of activation mechanisms despite highly homologous catalytic domains. Such diversity arises through coupling of extracellular ligand-binding portions with highly variable intracellular sequences flanking the tyrosine kinase domain and specific patterns of autophosphorylation sites. Here, we show that the juxtamembrane (JM) segment enhances RET catalytic domain activity through Y687. This phospho-site is also required by the JM region to rescue an otherwise catalytically deficient RET activation-loop mutant lacking tyrosines. Structure-function analyses identified interactions between the JM hinge, αC helix, and an unconventional activation-loop serine phosphorylation site that engages the HRD motif and promotes phospho-tyrosine conformational accessibility and regulatory spine assembly. We demonstrate that this phospho-S909 arises from an intrinsic RET dual-specificity kinase activity and show that an equivalent serine is required for RET signaling in Drosophila. Our findings reveal dual-specificity and allosteric components for the mechanism of RET activation and signaling with direct implications for drug discovery.


Assuntos
Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Proteínas Proto-Oncogênicas c-ret/química , Proteínas Proto-Oncogênicas c-ret/metabolismo , Receptores Proteína Tirosina Quinases/química , Relação Estrutura-Atividade , Regulação Alostérica/genética , Sequência de Aminoácidos/genética , Animais , Membrana Celular/química , Membrana Celular/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster , Ativação Enzimática/genética , Fosforilação , Proteínas Proto-Oncogênicas c-ret/genética , Receptores Proteína Tirosina Quinases/genética , Serina/metabolismo , Transdução de Sinais/genética
14.
Elife ; 3: e03638, 2014 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-25030911

RESUMO

CTP Synthetase (CtpS) is a universally conserved and essential metabolic enzyme. While many enzymes form small oligomers, CtpS forms large-scale filamentous structures of unknown function in prokaryotes and eukaryotes. By simultaneously monitoring CtpS polymerization and enzymatic activity, we show that polymerization inhibits activity, and CtpS's product, CTP, induces assembly. To understand how assembly inhibits activity, we used electron microscopy to define the structure of CtpS polymers. This structure suggests that polymerization sterically hinders a conformational change necessary for CtpS activity. Structure-guided mutagenesis and mathematical modeling further indicate that coupling activity to polymerization promotes cooperative catalytic regulation. This previously uncharacterized regulatory mechanism is important for cellular function since a mutant that disrupts CtpS polymerization disrupts E. coli growth and metabolic regulation without reducing CTP levels. We propose that regulation by large-scale polymerization enables ultrasensitive control of enzymatic activity while storing an enzyme subpopulation in a conformationally restricted form that is readily activatable.


Assuntos
Carbono-Nitrogênio Ligases/metabolismo , Citidina Trifosfato/biossíntese , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Proteínas Recombinantes de Fusão/metabolismo , Carbono-Nitrogênio Ligases/química , Carbono-Nitrogênio Ligases/genética , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Expressão Gênica , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Multimerização Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética
15.
PLoS One ; 7(8): e43041, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22912783

RESUMO

Caveolin-1 and caveolae are differentially polarized in migrating cells in various models, and caveolin-1 expression has been shown to quantitatively modulate cell migration. PTRF/cavin-1 is a cytoplasmic protein now established to be also necessary for caveola formation. Here we tested the effect of PTRF expression on cell migration. Using fluorescence imaging, quantitative proteomics, and cell migration assays we show that PTRF/cavin-1 modulates cellular polarization, and the subcellular localization of Rac1 and caveolin-1 in migrating cells as well as PKCα caveola recruitment. PTRF/cavin-1 quantitatively reduced cell migration, and induced mesenchymal epithelial reversion. Similar to caveolin-1, the polarization of PTRF/cavin-1 was dependent on the migration mode. By selectively manipulating PTRF/cavin-1 and caveolin-1 expression (and therefore caveola formation) in multiple cell systems, we unveil caveola-independent functions for both proteins in cell migration.


Assuntos
Caveolina 1/metabolismo , Movimento Celular/fisiologia , Polaridade Celular/fisiologia , Proteínas de Membrana/metabolismo , Animais , Western Blotting , Movimento Celular/genética , Polaridade Celular/genética , Quimiotaxia/fisiologia , Camundongos , Microscopia de Fluorescência , Microscopia de Vídeo , Células NIH 3T3 , Neuropeptídeos/metabolismo , Proteínas de Ligação a RNA , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP
16.
Curr Opin Microbiol ; 14(6): 704-11, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22014508

RESUMO

The bacterial cytoskeleton is composed of a complex and diverse group of proteins that self-assemble into linear filaments. These filaments support and organize cellular architecture and provide a dynamic network controlling transport and localization within the cell. Here, we review recent discoveries related to a newly appreciated class of self-assembling proteins that expand our view of the bacterial cytoskeleton and provide potential explanations for its evolutionary origins. Specifically, several types of metabolic enzymes can form structures similar to established cytoskeletal filaments and, in some cases, these structures have been repurposed for structural uses independent of their normal roles. The behaviors of these enzymes suggest that some modern cytoskeletal proteins may have evolved from dual-role proteins with catalytic and structural functions.


Assuntos
Bactérias/enzimologia , Proteínas de Bactérias/metabolismo , Proteínas do Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Enzimas/metabolismo , Multimerização Proteica , Redes e Vias Metabólicas , Modelos Biológicos , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA