Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 40(28): 14224-14232, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38940536

RESUMO

It is known that glow discharges with a water anode inject and form solvated electrons at the plasma-liquid interface, driving a wide variety of reduction reactions. However, in systems with a water cathode, the production and role of solvated electrons are less clear. Here, we present evidence for the direct detection of solvated electrons produced at the interface of an argon plasma and a water cathode via absorption spectroscopy. We further quantify their yield using the dissociative electron attachment of chloroacetate, measuring a yield of 1.04 ± 0.59 electrons per incident ion, corresponding to approximately 100% faradaic efficiency. Additionally, we estimate a yield of 2.09 ± 0.93 hydroxyl radicals per incident ion. Comparison of this yield with other findings in the literature supports that these hydroxyl radicals are likely formed directly in the liquid phase rather than by diffusion from the vapor phase.

2.
PLoS Comput Biol ; 19(6): e1010156, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37267376

RESUMO

Predictive models, based upon epidemiological principles and fitted to surveillance data, play an increasingly important role in shaping regulatory and operational policies for emerging outbreaks. Data for parameterising these strategically important models are often scarce when rapid actions are required to change the course of an epidemic invading a new region. We introduce and test a flexible epidemiological framework for landscape-scale disease management of an emerging vector-borne pathogen for use with endemic and invading vector populations. We use the framework to analyse and predict the spread of Huanglongbing disease or citrus greening in the U.S. We estimate epidemiological parameters using survey data from one region (Texas) and show how to transfer and test parameters to construct predictive spatio-temporal models for another region (California). The models are used to screen effective coordinated and reactive management strategies for different regions.


Assuntos
Citrus , Epidemias , Doenças das Plantas/prevenção & controle , Surtos de Doenças
3.
Chemphyschem ; 24(24): e202300465, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-37877631

RESUMO

The reactivity of chromium(III) species with the major oxidizing and reducing radiolysis products of water was investigated in aqueous solutions at temperatures up to 150 °C. The reaction between the hydrated electron (eaq - ) and Cr(III) species showed a positive temperature dependence over this temperature range. The reaction was also studied in pH 2.5 and 3.5 solutions for the first time. This work also studied the reaction between acidic Cr(III) species and the hydroxyl radical (⋅OH). It was found that Cr3+ did not react significantly with the ⋅OH radical, but the first hydrolysis species, Cr(OH)2+ , did with a rate coefficient of k= (7.2±0.3)×108  M-1 s-1 at 25 °C. The oxidation of Cr(OH)2+ by the ⋅OH radical formed an absorbing product species that ultimately oxidized to give Cr(VI). These newly measured reaction rates allow for the development of improved models of aqueous chromium speciation for the effective remediation of liquid high-level nuclear waste via vitrification processes.

4.
J Phys Chem A ; 127(27): 5683-5688, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37369989

RESUMO

Pulsed electron radiolysis was used to determine the chemical reaction kinetics and Arrhenius parameters for iron(II) reactions in aqueous solutions under irradiation. The second-order Fe2+ reactions with the hydrated electron (eaq-) and the perhydroxyl radical (HO2•), arising from water radiolysis, were measured to high temperatures using custom-built flow-through cells with a multichannel optical detection system. The reaction with the HO2• radical was found to proceed via the formation of a metal-ion adduct species, Fe2+-HO2•. The adduct's molar extinction coefficient and its first-order decay rate coefficients are also reported.

5.
Phys Chem Chem Phys ; 24(33): 19882-19889, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35959849

RESUMO

Reactivity of transients involving Zn+ in high-temperature water radiolysis has been studied in the temperature range of 25-300 °C. The reduced monovalent zinc species were generated from an electron transfer process between the hydrated electron and Zn2+ ions using pulse radiolysis. The Zn+ species can subsequently be oxidized by the radiolytically-produced oxidizing species: ˙OH, H2O2 and ˙H. We find that the absorption of monovalent zinc is very sensitive to the pH of the medium. An absorption maximum at 306-311 nm is most pronounced at pH 7 and the signal then decreases in acidic media where the reducing electrons are competitively captured by protons. At pH values higher than 7, hydroxo-forms of Zn2+ are created and the maximum of the absorption signal begins to shift to the red spectral region. We find that the optical spectrum of Zn+aq cannot be fully explained in terms of a charge-transfer to solvent (CTTS) process, which was previously proposed. Reaction rates of most of the recombination reactions investigated follow the empirical Arrhenius relationship at temperatures up to 200 °C and have been determined at higher temperatures for the first time. A bimolecular disproportionation reaction of Zn+aq is not observed under the conditions investigated.

6.
Phys Chem Chem Phys ; 23(15): 9109-9120, 2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33885094

RESUMO

The lowest band in the charge-transfer-to-solvent ultraviolet absorption spectrum of aqueous chloride ion is studied by experiment and computation. Interestingly, the experiments indicate that at concentrations up to at least 0.25 M, where calculations indicate ion pairing to be significant, there is no notable effect of ionic strength on the spectrum. The experimental spectra are fitted to aid comparison with computations. Classical molecular dynamic simulations are carried out on dilute aqueous Cl-, Na+, and NaCl, producing radial distribution functions in reasonable agreement with experiment and, for NaCl, clear evidence of ion pairing. Clusters are extracted from the simulations for quantum mechanical excited state calculations. Accurate ab initio coupled-cluster benchmark calculations on a small number of representative clusters are carried out and used to identify and validate an efficient protocol based on time-dependent density functional theory. The latter is used to carry out quantum mechanical calculations on thousands of clusters. The resulting computed spectrum is in excellent agreement with experiment for the peak position, with little influence from ion pairing, but is in qualitative disagreement on the width, being only about half as wide. It is concluded that simulation by classical molecular dynamics fails to provide an adequate variety of structures to explain the experimental CTTS spectrum of aqueous Cl-.

7.
Artigo em Inglês | MEDLINE | ID: mdl-35023888

RESUMO

We demonstrate a method for measuring the H2 produced in water from the 10B(n,α)7Li fission reaction. Low energy neutrons from the NIST Center for Neutron Research interact with borate-containing water in a temperature-controlled high pressure cell made from titanium. After exposure for one to several hours, the water is extracted and sparged with argon. H2 entrained in the sparging gas is sampled with a small mass spectrometer. To determine the neutron exposure, a small amount of sodium is included in the borate solution. The water is collected and 24Na activation is measured in a counting apparatus on the following day. The G-value for H2 at room temperature is found to be (1.18 ± 0.10) molecules H2/100eV, in good agreement with previous estimates and recent modeling calculations.

8.
Langmuir ; 36(5): 1156-1164, 2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-31995383

RESUMO

When a nonthermal plasma and a liquid form part of the same circuit, the liquid may function as a cathode, in which case electrons are emitted from the liquid into the gas to sustain the plasma. As opposed to solid electrodes, the mechanism of this emission has not been established for a liquid, even though various theories have attempted to explain it via chemical processes in the liquid phase. In this work, we tested the effects of the interfacial chemistry on electron emission from water, including the role of pH as well as the hydroxyl radical, the hydrogen atom, the solvated electron, and the presolvated electron; it was found that none of these species are critical to sustain the plasma. We propose an emission mechanism where electrons, generated from ionized water molecules in the uppermost monolayers of solution, are emitted into the plasma directly from the conduction band of the water.

9.
Phys Chem Chem Phys ; 22(34): 19046-19058, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32902533

RESUMO

The one-electron redox potentials for aqueous metal couples Co2+/+ and Ni2+/+ have been investigated by using pulse radiolysis using their reactions with a series of reference compounds to establish the most positive upper limits of E0. Experiments with Zn+ were also carried out to confirm the characteristic shape of the expected reduction kinetics. Both formate ions and t-BuOH were employed to scavenge ˙OH radicals and ˙H atoms. Kinetics and fitted first and second order reaction rates have been reported for reactions with methyl viologen, fluorescein, Ru(NH3)63+, Co(en)32+, Co(sepulcrate)3+, Ru(bpy)32+, Cr(bpy)33+, and Ni(Me6[14]4,11-dieneN4)2+. Previous work demonstrated that both Co2+ and Ni2+ can be reduced by CO2˙- radicals, giving a negative E0 limit of -1.9 V vs. SHE. A definite reaction of Ni+ with fluorescein di-anions provides a new upper limit of the Ni2+/+ couple as -0.906 V vs. SHE. The reaction of Co+ with Ru(bpy)32+ has been confirmed, giving E0 = -1.3 V vs. SHE as a rigorous upper limit of the Co2+/+ couple. In the case of Co2+/+, kinetics were complicated by a self-catalyzed metal clustering phenomenon. Initiation rate constants of this process have also been reported.

10.
Phys Chem Chem Phys ; 21(44): 24419-24428, 2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31663553

RESUMO

The temperature dependence of the vacuum ultraviolet charge-transfer-to-solvent (CTTS) absorption spectra of aqueous halide and hydroxide ions was measured for the first time up to 380 °C in subcritical and supercritical water. With increasing temperature, absorption spectra are observed to broaden and redshift, much in agreement with previous measurements below 100 °C. These changes are discussed alongside classic cavity models of the solvated species, which tie in the configuration of the adjoining polarized medium and its critical role in light absorption for electronic transitions. The data seemingly confirm the validity of the "diffuse" model pioneered by Platzman and Franck and later revised by Stein and Treinin, which has largely gone untested for nearly 60 years due to lack of experimental data in this extended temperature range. A gradual increase in anion cavity size is inferred as a function of increasing temperature while the enthalpy and entropy of hydration are largely unaffected. The changes in solvation properties are considered in the context of recent studies of the ultraviolet spectroscopy of subcritical and supercritical water and historic studies of the CTTS absorption. The "diffuse" polarizable continuum model succeeds in describing the absorption due to lack of well-defined ion hydration shells for these ions. CTTS spectra for iodide in supercritical water show no energy shift as a function of pressure/density, suggesting dielectric saturation of the I- anion by the adjacent H2O molecules at all experimental pressures/densities.

11.
J Phys Chem A ; 120(2): 200-9, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26741025

RESUMO

Molecular hydrogen is a primary product of the interaction of low-LET (γ, ß) radiation with water, and previous measurements have shown that its initial yield increases at elevated temperature. This has been the subject of controversy because more atomic H and (e(-))aq free radicals escape recombination at elevated temperature, and the corresponding production of H2 should decrease. Room temperature experiments have demonstrated that a large fraction of H2 also comes from early physicochemical processes (presumably electron-hole charge recombination and/or dissociative electron attachment), which can be suppressed by scavenging presolvated electrons. In the present work we extend these scavenging measurements up to 350 °C to investigate why the H2 yield increases. We find that most of the H2 yield increase is due to the "presolvation" processes. Relatively small changes in the scavenging efficiency vs LET, and a significant effect of temperature depending on the (positive or negative) charge of the scavenger, indicate that the presolvation H2 is dominated by electron-hole charge recombination rather than dissociative electron attachment at all temperatures.

12.
J Phys Chem A ; 119(10): 1830-7, 2015 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-25686211

RESUMO

The self-recombination reaction of (•)CH2OH radicals in neutral aqueous solution has been studied at temperatures up to 300 °C at a pressure of 220 bar using pulse radiolysis and transient absorption. (•)CH2OH species decay by second-order kinetics independent of the applied dose, with a rate constant at 22 °C of 2k = 1.4 ± 0.1 × 10(9) M(-1) s(-1). The recombination follows Arrhenius behavior with the activation energy (E(a)) 12.7 ± 0.9 kJ/mol and pre-exponential factor of 1.9 ± 0.4 × 10(11) M(-1) s(-1). The overall recombination is significantly slower than the diffusion limit at elevated temperature, meaning that both disproportionation and dimerization channels have significant activation barriers. Ab initio calculations support the inference that the dimerization channel has no energy barrier, but has a large negative activation entropy barrier. The disproportionation channel (giving aqueous formaldehyde) almost certainly involves one or more specific water molecules to lower its activation energy relative to the gas phase.

13.
J Phys Chem A ; 119(45): 11094-104, 2015 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-26530531

RESUMO

Reactions of the hydrated electron with divalent aqueous transition-metal ions, Cd(2+), Zn(2+), Ni(2+), Cu(2+), Co(2+), Fe(2+), and Mn(2+), were studied using a pulse radiolysis technique. The kinetics study was carried out at a constant pressure of 120 bar with temperatures up to 300 °C. The rate constants at room temperature agree with those reported in the literature. The reaction of Cd(2+) is approximately diffusion-limited, but none of the first-row transition-metal ion reactions are diffusion-controlled at any temperature studied. The activation energies obtained from the Arrhenius plots are in the range 14.5-40.6 kJ/mol. Pre-exponential factors are quite large, between 1 × 10(13) and 7 × 10(15) M(-1) s(-1). There appears to be a large degree of entropy-enthalpy compensation in the activation of Zn(2+), Ni(2+), Co(2+), and Cu(2+), as the larger pre-exponential factors strongly correlate with higher activation energy. Saturation of the ionic strength effect suggests that these reactions could be long-range nonadiabatic electron "jumps", but Marcus theory is incompatible with direct formation of ground state (M(+))aq ions. A self-consistent explanation is that electron transfer occurs to excited states derived from the metal 4s orbitals. The ionic strength effect in the Mn(2+) and Fe(2+) reactions suggests that these proceed by short-range adiabatic electron attachment involving breakdown of the water coordination shell.

14.
J Phys Chem A ; 119(34): 9148-59, 2015 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-26275103

RESUMO

Since its discovery over 50 years ago, the "structure" and properties of the hydrated electron have been a subject for wonderment and also fierce debate. In the present work we seriously explore a minimal model for the aqueous electron, consisting of a small water anion cluster embedded in a polarized continuum, using several levels of ab initio calculation and basis set. The minimum energy "zero Kelvin" structure found for any 4-water (or larger) anion cluster, at any post-Hartree­Fock theory level, is very similar to a recently reported embedded-DFT-in-classical-water-MD simulation (Uhlig, Marsalek, and Jungwirth, J. Phys. Chem. Lett. 2012, 3, 3071−3075), with four OH bonds oriented toward the maximum charge density in a small central "void". The minimum calculation with just four water molecules does a remarkably good job of reproducing the resonance Raman properties, the radius of gyration derived from the optical spectrum, the vertical detachment energy, and the hydration free energy. For the first time we also successfully calculate the EPR g-factor and (low temperature ice) hyperfine couplings. The simple tetrahedral anion cluster model conforms very well to experiment, suggesting it does in fact represent the dominant structural motif of the hydrated electron.


Assuntos
Elétrons , Teoria Quântica , Água/química , Ligação de Hidrogênio , Conformação Molecular , Simulação de Dinâmica Molecular , Rotação , Termodinâmica
16.
J Econ Entomol ; 107(5): 1946-58, 2014 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-26309285

RESUMO

Population genetic diversity of the oriental fruit fly, Bactrocera dorsalis (Hendel), on the Hawaiian islands of Oahu, Maui, Kauai, and Hawaii (the Big Island) was estimated using DNA sequences of the mitochondrial cytochrome c oxidase subunit I gene. In total, 932 flies representing 36 sampled sites across the four islands were sequenced for a 1,500-bp fragment of the gene named the C1500 marker. Genetic variation was low on the Hawaiian Islands with >96% of flies having just two haplotypes: C1500-Haplotype 1 (63.2%) or C1500-Haplotype 2 (33.3%). The other 33 flies (3.5%) had haplotypes similar to the two dominant haplotypes. No population structure was detected among the islands or within islands. The two haplotypes were present at similar frequencies at each sample site, suggesting that flies on the various islands can be considered one population. Comparison of the Hawaiian data set to DNA sequences of 165 flies from outbreaks in California between 2006 and 2012 indicates that a single-source introduction pathway of Hawaiian origin cannot explain many of the flies in California. Hawaii, however, could not be excluded as a maternal source for 69 flies. There was no clear geographic association for Hawaiian or non-Hawaiian haplotypes in the Bay Area or Los Angeles Basin over time. This suggests that California experienced multiple, independent introductions from different sources.


Assuntos
Variação Genética , Tephritidae/genética , Distribuição Animal , Animais , California , Complexo IV da Cadeia de Transporte de Elétrons/genética , Haplótipos , Havaí , Controle de Insetos , Proteínas de Insetos/genética , Espécies Introduzidas , Análise de Sequência de DNA
17.
J Phys Chem B ; 128(2): 567-575, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38184793

RESUMO

Many questions remain about the reactions of the hydrated electron despite decades of study. Of particular note is that they do not appear to follow the Marcus theory of electron transfer reactions, a feature that is yet to be explained. To investigate these issues, we used ab initio molecular dynamics (AIMD) simulations to investigate one of the better studied reactions, the hydrated electron reduction of CO2. The rate constant for the hydrated electron-CO2 reaction complex to react to form CO2- is for the first time estimated from AIMD simulations. Results at 298 and 373 K show the rate constant is insensitive to temperature, consistent with the low measured activation energy for the reaction, and the implications of this behavior are examined. The sampling provided by the simulations yields insight into the reaction mechanism. The reaction is found to involve both solvent reorganization and changes in the carbon dioxide structure. The latter leads to significant vibrational excitation of the bending and symmetric stretch vibrations in the CO2- product, indicating the reaction is vibrationally nonadiabatic. The former is estimated from the calculation of an approximate collective solvent coordinate and the free energy in this coordinate is determined. These results indicate that AIMD simulations can reasonably estimate hydrated electron reaction activation energies and provide new insight into the mechanism that can help illuminate the features of this unusual chemistry.

18.
Lancet ; 380(9859): 2095-128, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23245604

RESUMO

BACKGROUND: Reliable and timely information on the leading causes of death in populations, and how these are changing, is a crucial input into health policy debates. In the Global Burden of Diseases, Injuries, and Risk Factors Study 2010 (GBD 2010), we aimed to estimate annual deaths for the world and 21 regions between 1980 and 2010 for 235 causes, with uncertainty intervals (UIs), separately by age and sex. METHODS: We attempted to identify all available data on causes of death for 187 countries from 1980 to 2010 from vital registration, verbal autopsy, mortality surveillance, censuses, surveys, hospitals, police records, and mortuaries. We assessed data quality for completeness, diagnostic accuracy, missing data, stochastic variations, and probable causes of death. We applied six different modelling strategies to estimate cause-specific mortality trends depending on the strength of the data. For 133 causes and three special aggregates we used the Cause of Death Ensemble model (CODEm) approach, which uses four families of statistical models testing a large set of different models using different permutations of covariates. Model ensembles were developed from these component models. We assessed model performance with rigorous out-of-sample testing of prediction error and the validity of 95% UIs. For 13 causes with low observed numbers of deaths, we developed negative binomial models with plausible covariates. For 27 causes for which death is rare, we modelled the higher level cause in the cause hierarchy of the GBD 2010 and then allocated deaths across component causes proportionately, estimated from all available data in the database. For selected causes (African trypanosomiasis, congenital syphilis, whooping cough, measles, typhoid and parathyroid, leishmaniasis, acute hepatitis E, and HIV/AIDS), we used natural history models based on information on incidence, prevalence, and case-fatality. We separately estimated cause fractions by aetiology for diarrhoea, lower respiratory infections, and meningitis, as well as disaggregations by subcause for chronic kidney disease, maternal disorders, cirrhosis, and liver cancer. For deaths due to collective violence and natural disasters, we used mortality shock regressions. For every cause, we estimated 95% UIs that captured both parameter estimation uncertainty and uncertainty due to model specification where CODEm was used. We constrained cause-specific fractions within every age-sex group to sum to total mortality based on draws from the uncertainty distributions. FINDINGS: In 2010, there were 52·8 million deaths globally. At the most aggregate level, communicable, maternal, neonatal, and nutritional causes were 24·9% of deaths worldwide in 2010, down from 15·9 million (34·1%) of 46·5 million in 1990. This decrease was largely due to decreases in mortality from diarrhoeal disease (from 2·5 to 1·4 million), lower respiratory infections (from 3·4 to 2·8 million), neonatal disorders (from 3·1 to 2·2 million), measles (from 0·63 to 0·13 million), and tetanus (from 0·27 to 0·06 million). Deaths from HIV/AIDS increased from 0·30 million in 1990 to 1·5 million in 2010, reaching a peak of 1·7 million in 2006. Malaria mortality also rose by an estimated 19·9% since 1990 to 1·17 million deaths in 2010. Tuberculosis killed 1·2 million people in 2010. Deaths from non-communicable diseases rose by just under 8 million between 1990 and 2010, accounting for two of every three deaths (34·5 million) worldwide by 2010. 8 million people died from cancer in 2010, 38% more than two decades ago; of these, 1·5 million (19%) were from trachea, bronchus, and lung cancer. Ischaemic heart disease and stroke collectively killed 12·9 million people in 2010, or one in four deaths worldwide, compared with one in five in 1990; 1·3 million deaths were due to diabetes, twice as many as in 1990. The fraction of global deaths due to injuries (5·1 million deaths) was marginally higher in 2010 (9·6%) compared with two decades earlier (8·8%). This was driven by a 46% rise in deaths worldwide due to road traffic accidents (1·3 million in 2010) and a rise in deaths from falls. Ischaemic heart disease, stroke, chronic obstructive pulmonary disease (COPD), lower respiratory infections, lung cancer, and HIV/AIDS were the leading causes of death in 2010. Ischaemic heart disease, lower respiratory infections, stroke, diarrhoeal disease, malaria, and HIV/AIDS were the leading causes of years of life lost due to premature mortality (YLLs) in 2010, similar to what was estimated for 1990, except for HIV/AIDS and preterm birth complications. YLLs from lower respiratory infections and diarrhoea decreased by 45-54% since 1990; ischaemic heart disease and stroke YLLs increased by 17-28%. Regional variations in leading causes of death were substantial. Communicable, maternal, neonatal, and nutritional causes still accounted for 76% of premature mortality in sub-Saharan Africa in 2010. Age standardised death rates from some key disorders rose (HIV/AIDS, Alzheimer's disease, diabetes mellitus, and chronic kidney disease in particular), but for most diseases, death rates fell in the past two decades; including major vascular diseases, COPD, most forms of cancer, liver cirrhosis, and maternal disorders. For other conditions, notably malaria, prostate cancer, and injuries, little change was noted. INTERPRETATION: Population growth, increased average age of the world's population, and largely decreasing age-specific, sex-specific, and cause-specific death rates combine to drive a broad shift from communicable, maternal, neonatal, and nutritional causes towards non-communicable diseases. Nevertheless, communicable, maternal, neonatal, and nutritional causes remain the dominant causes of YLLs in sub-Saharan Africa. Overlaid on this general pattern of the epidemiological transition, marked regional variation exists in many causes, such as interpersonal violence, suicide, liver cancer, diabetes, cirrhosis, Chagas disease, African trypanosomiasis, melanoma, and others. Regional heterogeneity highlights the importance of sound epidemiological assessments of the causes of death on a regular basis. FUNDING: Bill & Melinda Gates Foundation.


Assuntos
Causas de Morte/tendências , Saúde Global/estatística & dados numéricos , Mortalidade/tendências , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Fatores Sexuais , Adulto Jovem
19.
Lancet ; 380(9859): 2163-96, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23245607

RESUMO

BACKGROUND: Non-fatal health outcomes from diseases and injuries are a crucial consideration in the promotion and monitoring of individual and population health. The Global Burden of Disease (GBD) studies done in 1990 and 2000 have been the only studies to quantify non-fatal health outcomes across an exhaustive set of disorders at the global and regional level. Neither effort quantified uncertainty in prevalence or years lived with disability (YLDs). METHODS: Of the 291 diseases and injuries in the GBD cause list, 289 cause disability. For 1160 sequelae of the 289 diseases and injuries, we undertook a systematic analysis of prevalence, incidence, remission, duration, and excess mortality. Sources included published studies, case notification, population-based cancer registries, other disease registries, antenatal clinic serosurveillance, hospital discharge data, ambulatory care data, household surveys, other surveys, and cohort studies. For most sequelae, we used a Bayesian meta-regression method, DisMod-MR, designed to address key limitations in descriptive epidemiological data, including missing data, inconsistency, and large methodological variation between data sources. For some disorders, we used natural history models, geospatial models, back-calculation models (models calculating incidence from population mortality rates and case fatality), or registration completeness models (models adjusting for incomplete registration with health-system access and other covariates). Disability weights for 220 unique health states were used to capture the severity of health loss. YLDs by cause at age, sex, country, and year levels were adjusted for comorbidity with simulation methods. We included uncertainty estimates at all stages of the analysis. FINDINGS: Global prevalence for all ages combined in 2010 across the 1160 sequelae ranged from fewer than one case per 1 million people to 350,000 cases per 1 million people. Prevalence and severity of health loss were weakly correlated (correlation coefficient -0·37). In 2010, there were 777 million YLDs from all causes, up from 583 million in 1990. The main contributors to global YLDs were mental and behavioural disorders, musculoskeletal disorders, and diabetes or endocrine diseases. The leading specific causes of YLDs were much the same in 2010 as they were in 1990: low back pain, major depressive disorder, iron-deficiency anaemia, neck pain, chronic obstructive pulmonary disease, anxiety disorders, migraine, diabetes, and falls. Age-specific prevalence of YLDs increased with age in all regions and has decreased slightly from 1990 to 2010. Regional patterns of the leading causes of YLDs were more similar compared with years of life lost due to premature mortality. Neglected tropical diseases, HIV/AIDS, tuberculosis, malaria, and anaemia were important causes of YLDs in sub-Saharan Africa. INTERPRETATION: Rates of YLDs per 100,000 people have remained largely constant over time but rise steadily with age. Population growth and ageing have increased YLD numbers and crude rates over the past two decades. Prevalences of the most common causes of YLDs, such as mental and behavioural disorders and musculoskeletal disorders, have not decreased. Health systems will need to address the needs of the rising numbers of individuals with a range of disorders that largely cause disability but not mortality. Quantification of the burden of non-fatal health outcomes will be crucial to understand how well health systems are responding to these challenges. Effective and affordable strategies to deal with this rising burden are an urgent priority for health systems in most parts of the world. FUNDING: Bill & Melinda Gates Foundation.


Assuntos
Saúde Global/estatística & dados numéricos , Nível de Saúde , Anos de Vida Ajustados por Qualidade de Vida , Ferimentos e Lesões/epidemiologia , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Feminino , Humanos , Incidência , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Prevalência , Fatores Sexuais , Adulto Jovem
20.
Lancet ; 380(9859): 2197-223, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23245608

RESUMO

BACKGROUND: Measuring disease and injury burden in populations requires a composite metric that captures both premature mortality and the prevalence and severity of ill-health. The 1990 Global Burden of Disease study proposed disability-adjusted life years (DALYs) to measure disease burden. No comprehensive update of disease burden worldwide incorporating a systematic reassessment of disease and injury-specific epidemiology has been done since the 1990 study. We aimed to calculate disease burden worldwide and for 21 regions for 1990, 2005, and 2010 with methods to enable meaningful comparisons over time. METHODS: We calculated DALYs as the sum of years of life lost (YLLs) and years lived with disability (YLDs). DALYs were calculated for 291 causes, 20 age groups, both sexes, and for 187 countries, and aggregated to regional and global estimates of disease burden for three points in time with strictly comparable definitions and methods. YLLs were calculated from age-sex-country-time-specific estimates of mortality by cause, with death by standardised lost life expectancy at each age. YLDs were calculated as prevalence of 1160 disabling sequelae, by age, sex, and cause, and weighted by new disability weights for each health state. Neither YLLs nor YLDs were age-weighted or discounted. Uncertainty around cause-specific DALYs was calculated incorporating uncertainty in levels of all-cause mortality, cause-specific mortality, prevalence, and disability weights. FINDINGS: Global DALYs remained stable from 1990 (2·503 billion) to 2010 (2·490 billion). Crude DALYs per 1000 decreased by 23% (472 per 1000 to 361 per 1000). An important shift has occurred in DALY composition with the contribution of deaths and disability among children (younger than 5 years of age) declining from 41% of global DALYs in 1990 to 25% in 2010. YLLs typically account for about half of disease burden in more developed regions (high-income Asia Pacific, western Europe, high-income North America, and Australasia), rising to over 80% of DALYs in sub-Saharan Africa. In 1990, 47% of DALYs worldwide were from communicable, maternal, neonatal, and nutritional disorders, 43% from non-communicable diseases, and 10% from injuries. By 2010, this had shifted to 35%, 54%, and 11%, respectively. Ischaemic heart disease was the leading cause of DALYs worldwide in 2010 (up from fourth rank in 1990, increasing by 29%), followed by lower respiratory infections (top rank in 1990; 44% decline in DALYs), stroke (fifth in 1990; 19% increase), diarrhoeal diseases (second in 1990; 51% decrease), and HIV/AIDS (33rd in 1990; 351% increase). Major depressive disorder increased from 15th to 11th rank (37% increase) and road injury from 12th to 10th rank (34% increase). Substantial heterogeneity exists in rankings of leading causes of disease burden among regions. INTERPRETATION: Global disease burden has continued to shift away from communicable to non-communicable diseases and from premature death to years lived with disability. In sub-Saharan Africa, however, many communicable, maternal, neonatal, and nutritional disorders remain the dominant causes of disease burden. The rising burden from mental and behavioural disorders, musculoskeletal disorders, and diabetes will impose new challenges on health systems. Regional heterogeneity highlights the importance of understanding local burden of disease and setting goals and targets for the post-2015 agenda taking such patterns into account. Because of improved definitions, methods, and data, these results for 1990 and 2010 supersede all previously published Global Burden of Disease results. FUNDING: Bill & Melinda Gates Foundation.


Assuntos
Saúde Global/estatística & dados numéricos , Nível de Saúde , Anos de Vida Ajustados por Qualidade de Vida , Ferimentos e Lesões/epidemiologia , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Prevalência , Fatores Sexuais , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA