RESUMO
The current work presents the study of a semicrystalline, shape memory polymer synthesized by simultaneous free radical polymerization and crosslinking in a blend of polybutadiene (PB) and octadecyl acrylate. Blending elastomers and phase change materials provide a modular method for new smart materials, such as shape memory polymers. In this system, grafted, side-chain crystalline poly(octadecyl acrylate) (PODA) fixes a programmed shape in the shape memory cycle, while crosslinked polybutadiene drives shape recovery. This work focuses on improving material parameters important for shape memory (crystallinity, gel fraction, melting temperature) by tuning the processing and formulation parameters (amount of crosslinker and PB weight fraction). The result is a shape memory PB-PODA copolymer that can be fabricated by melt processing and programmed without cooling below ambient temperature. It is found that good shape memory (i.e., high shape fixity and recovery) is obtained at a low PB weight fraction where a percolating PODA crystal network is formed at room temperature. The optimized sample shows excellent shape memory properties (fixity > 99%, recovery = 96%). It is shown that it is possible to mold this material into complex 3D shapes or topography with potential use in anticounterfeiting and antitampering applications.
Assuntos
Elastômeros , Polímeros , Polímeros/química , Polimerização , Acrilatos/químicaRESUMO
A semi-crystalline, shape memory polymer (SMP) is fabricated by free radical cross-linking, polymerization, and grafting in a blend of n-octadecyl acrylate and polybutadiene (PB). Poly(n-octadecyl acrylate) (PODA) is a side-chain crystalline polymer, which serves as the structure-fixing network counterbalancing the elastically deformed, cross-linked polymer network. At a constant 50/50 ratio of monomer and polymer the amount of free radical initiator, dicumyl peroxide (DCP) is varied from 1% to 5% w/w PB. From swelling measurements and calculation of the cross-link density it is determined that DCP produces greater than one cross-link per DCP molecule. It is found that lower cross-linking efficiency is favorable for higher shape fixity. This lower efficiency is found to produce a higher degree of crystallinity of the PODA in the 2-5% DCP samples, which is determined to be the main driver of higher shape fixity of the polymer. A SMP with >90% fixity and 100% recovery at uniaxial strains from 34-79% is achieved. This material should be useful for mold processing of shape memory articles. This approach provides a method to decouple the elastomeric and thermoplastic portions of a SMP to convert commodity elastomers into SMPs and tailor the shape memory response.
Assuntos
Materiais Inteligentes , Acrilatos , Butadienos , Elastômeros , Radicais Livres , PolimerizaçãoRESUMO
Bottlebrush polymers represent an important class of high-density side-chain-grafted polymers traditionally with high molecular weights, in which one or more polymeric side chains are tethered to each repeating unit of a linear polymer backbone, such that these macromolecules look like "bottlebrushes". The arrangement of molecular brushes is determined by side chains located at a distance considerably smaller than their unperturbed dimensions, leading to substantial monomer congestion and entropically unfavorable extension of both the backbone and the side chains. Traditionally, the conformation and physical properties of polymers are influenced by external stimuli such as solvent, temperature, pH, and light. However, a unique stimulus, salt, has recently gained attention as a means to induce shape changes in these molecular brushes. While the stimulus has been less researched to date, we see that these systems, when stimulated with salts, have the potential to be used in various engineering applications. This potential stems from the unique properties and behaviors these systems show when exposed to different salts, which could lead to new solutions and improvements in engineering processes, thus serving as the primary motivation for this narrative, as we aim to explore and highlight the various ways these systems can be utilized and the benefits they could bring to the field of engineering. This Review aims to introduce the concept of stimuli-responsive bottlebrush polymers, explore the evolutionary trajectory, delve into current trends in salt-responsive bottlebrush polymers, and elucidate how these polymers are addressing a variety of engineering challenges.