Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Eur Radiol ; 32(1): 34-45, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34120229

RESUMO

OBJECTIVES: To determine if golden-angle radial sparse parallel (GRASP) dynamic contrast-enhanced (DCE)-MRI allows simultaneous evaluation of perfusion and morphology in liver fibrosis. METHODS: Participants who were scheduled for liver biopsy or resection were enrolled (NCT02480972). Images were reconstructed at 12-s temporal resolution for morphologic assessment and at 3.3-s temporal resolution for quantitative evaluation. The image quality of the morphologic images was assessed on a four-point scale, and the Liver Imaging Reporting and Data System score was recorded for hepatic observations. Comparisons were made between quantitative parameters of DCE-MRI for the different fibrosis stages, and for hepatocellular carcinoma (HCCs) with different LR features. RESULTS: DCE-MRI of 64 participants (male = 48) were analyzed. The overall image quality consistently stood at 3.5 ± 0.4 to 3.7 ± 0.4 throughout the exam. Portal blood flow significantly decreased in participants with F2-F3 (n = 18, 175 ± 110 mL/100 mL/min) and F4 (n = 12, 98 ± 47 mL/100 mL/min) compared with those in participants with F0-F1 (n = 34, 283 ± 178 mL/100 mL/min, p < 0.05 for all). In participants with F4, the arterial fraction and extracellular volume were significantly higher than those in participants with F0-F1 and F2-F3 (p < 0.05). Compared with HCCs showing non-LR-M features (n = 16), HCCs with LR-M (n = 5) had a significantly prolonged mean transit time and lower arterial blood flow (p < 0.05). CONCLUSIONS: Liver MRI using GRASP obtains both sufficient spatial resolution for confident diagnosis and high temporal resolution for pharmacokinetic modeling. Significant differences were found between the MRI-derived portal blood flow at different hepatic fibrosis stages. KEY POINTS: A single MRI examination is able to provide both images with sufficient spatial resolution for anatomic evaluation and those with high temporal resolution for pharmacokinetic modeling. Portal blood flow was significantly lower in clinically significant hepatic fibrosis and mean transit time and extracellular volume increased in cirrhosis, compared with those in no or mild hepatic fibrosis. HCCs with different LR features showed different quantitative parameters of DCE-MRI: longer mean transit time and lower arterial flow were observed in HCCs with LR-M features.


Assuntos
Meios de Contraste , Neoplasias Hepáticas , Humanos , Cirrose Hepática/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Perfusão
2.
BMC Cancer ; 21(1): 1139, 2021 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-34688256

RESUMO

BACKGROUND: Post hepatectomy liver failure (PHLF) remains a significant risk in patients undergoing curative liver resection for cancer, however currently available PHLF risk prediction investigations are not sufficiently accurate. The Hepatectomy risk assessment with functional magnetic resonance imaging trial (HEPARIM) aims to establish if quantitative MRI biomarkers of liver function & perfusion can be used to more accurately predict PHLF risk and FLR function, measured against indocyanine green (ICG) liver function test. METHODS: HEPARIM is an observational cohort study recruiting patients undergoing liver resection of 2 segments or more, prior to surgery patients will have both Dynamic Gadoxetate-enhanced (DGE) liver MRI and ICG testing. Day one post op ICG testing is repeated and R15 compared to the Gadoxetate Clearance (GC) of the future liver remnant (FLR-GC) as measure by preoperative DGE- MRI which is the primary outcome, and preoperative ICG R15 compared to GC of whole liver (WL-GC) as a secondary outcome. Data will be collected from medical records, biochemistry, pathology and radiology reports and used in a multi-variate analysis to the value of functional MRI and derive multivariant prediction models for future validation. DISCUSSION: If successful, this test will potentially provide an efficient means to quantitatively assess FLR function and PHLF risk enabling surgeons to push boundaries of liver surgery further while maintaining safe practice and thereby offering chance of cure to patients who would previously been deemed inoperable. MRI has the added benefit of already being part of the routine diagnostic pathway and as such would have limited additional burden on patients time or cost to health care systems. (Hepatectomy Risk Assessment With Functional Magnetic Resonance Imaging - Full Text View - ClinicalTrials.gov , n.d.) TRIAL REGISTRATION: ClinicalTrials.gov, ClinicalTrials.gov NCT04705194 - Registered 12th January 2021 - Retrospectively registered.


Assuntos
Hepatectomia/métodos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/cirurgia , Imageamento por Ressonância Magnética/métodos , Humanos , Medição de Risco
3.
Phys Chem Chem Phys ; 17(39): 26369-77, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26388021

RESUMO

LiFePO4 is a battery cathode material with high safety standards due to its unique electronic structure. We performed systematic experimental and theoretical studies based on soft X-ray emission, absorption, and hard X-ray Raman spectroscopy of LixFePO4 nanoparticles and single crystals. The results clearly show a non-rigid electron-state reconfiguration of both the occupied and unoccupied Fe-3d and O-2p states during the (de)lithiation process. We focus on the energy configurations of the occupied states of LiFePO4 and the unoccupied states of FePO4, which are the critical states where electrons are removed and injected during the charge and discharge process, respectively. In LiFePO4, the soft X-ray emission spectroscopy shows that, due to the Coulomb repulsion effect, the occupied Fe-3d states with the minority spin sit close to the Fermi level. In FePO4, the soft X-ray absorption and hard X-ray Raman spectroscopy show that the unoccupied Fe-3d states again sit close to the Fermi level. These critical 3d electron state configurations are consistent with the calculations based on modified Becke and Johnson potentials GGA+U (MBJGGA+U) framework, which improves the overall lineshape prediction compared with the conventionally used GGA+U method. The combined experimental and theoretical studies show that the non-rigid electron state reshuffling guarantees the stability of oxygen during the redox reaction throughout the charge and discharge process of LiFePO4 electrodes, leading to the intrinsic safe performance of the electrodes.

4.
Life Sci ; 307: 120876, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35961595

RESUMO

Asiatic acid (AA), an aglycone of pentacyclic triterpene glycoside, obtained from the leaves of Centella asiatica exerts anticancer effects by inhibiting cellular proliferation and inducing apoptosis in a wide range of carcinogenic distresses. However, its chemotherapeutic efficacy is dampened by its low bioavailability. Polymeric nanoparticles (NPs) exhibit therapeutic efficacy and compliance by improving tissue penetration and lowering toxicity. Thus, to increase the therapeutic effectiveness of AA in the treatment of breast cancer, AA-loaded poly lactic-co-glycolic acid (PLGA) NPs (AA-PLGA NPs) have been formulated. The AA-PLGA NPs were characterized on the basis of their average particle size, zeta potential, electron microscopic imaging, drug loading, and entrapment efficiency. The NPs exhibited sustained drug release profile in vitro. Developed NPs exerted dose-dependent cytotoxicity to MCF-7 and MDA-MB-231 cells without damaging normal cells. The pro-oxidant and pro-apoptotic properties of AA-PLGA NPs were determined by the study of the cellular levels of SOD, CAT, GSH-GSSG, MDA, protein carbonylation, ROS, mitochondrial membrane potential, and FACS analyses on MCF-7 cells. Immunoblotting showed that AA-PLGA NPs elicited an intrinsic pathway of apoptosis in MCF-7 cells. In vivo studies on female BALB/c mice exhibited reduced volume of mammary pad tumor tissues and augmented expression of caspase-3 when administered with AA-PLGA NPs. No systemic adverse effect of AA-PLGA NPs was observed in our studies. Thus, AA-PLGA NPs can act as an efficient drug delivery system against breast cancer.


Assuntos
Antineoplásicos/farmacologia , Nanopartículas , Neoplasias , Animais , Caspase 3 , Linhagem Celular Tumoral , Portadores de Fármacos , Feminino , Dissulfeto de Glutationa , Glicolatos , Glicosídeos , Camundongos , Tamanho da Partícula , Triterpenos Pentacíclicos/farmacologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Espécies Reativas de Oxigênio , Superóxido Dismutase
6.
Nat Commun ; 6: 6870, 2015 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-25882717

RESUMO

The topology of a topological material can be encoded in its surface states. These surface states can only be removed by a bulk topological quantum phase transition into a trivial phase. Here we use photoemission spectroscopy to image the formation of protected surface states in a topological insulator as we chemically tune the system through a topological transition. Surprisingly, we discover an exotic spin-momentum locked, gapped surface state in the trivial phase that shares many important properties with the actual topological surface state in anticipation of the change of topology. Using a spin-resolved measurement, we show that apart from a surface bandgap these states develop spin textures similar to the topological surface states well before the transition. Our results offer a general paradigm for understanding how surface states in topological phases arise from a quantum phase transition and are suggestive for the future realization of Weyl arcs, condensed matter supersymmetry and other fascinating phenomena in the vicinity of a quantum criticality.

8.
ACS Nano ; 8(2): 1222-30, 2014 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-24428365

RESUMO

Bismuth selenide (Bi2Se3) is a 3D topological insulator, its strong spin-orbit coupling resulting in the well-known topologically protected coexistence of gapless metallic surface states and semiconducting bulk states with a band gap, Eg ≃ 300 meV. A fundamental question of considerable importance is how the electronic properties of this material evolve under nanoscale confinement. We report on catalyst-free, high-quality single-crystalline Bi2Se3 with controlled lateral sizes and layer thicknesses that could be tailored down to a few nanometers and a few quintuple layers (QLs), respectively. Energy-resolved photoabsorption spectroscopy (1.5 eV < E(photon) < 6 eV) of these samples reveals a dramatic evolution of the photon absorption spectra as a function of size, transitioning from a featureless metal-like spectrum in the bulk (corresponding to a visually gray color), to one with a remarkably large band gap (Eg ≥ 2.5 eV) and a spectral shape that correspond to orange-red colorations in the smallest samples, similar to those seen in semiconductor nanostructures. We analyze this colorful transition using ab initio density functional theory and tight-binding calculations which corroborate our experimental findings and further suggest that while purely 2D sheets of few QL-thick Bi2Se3 do exhibit small band gaps that are consistent with previous ARPES results, the presently observed large gaps of a few electronvolts can only result from a combined effect of confinement in all three directions.

9.
Nat Commun ; 5: 3841, 2014 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-24815418

RESUMO

Understanding the spin-texture behaviour of boundary modes in ultrathin topological insulator films is critically essential for the design and fabrication of functional nanodevices. Here, by using spin-resolved photoemission spectroscopy with p-polarized light in topological insulator Bi2Se3 thin films, we report tunnelling-dependent evolution of spin configuration in topological insulator thin films across the metal-to-insulator transition. We report a systematic binding energy- and wavevector-dependent spin polarization for the topological surface electrons in the ultrathin gapped-Dirac-cone limit. The polarization decreases significantly with enhanced tunnelling realized systematically in thin insulating films, whereas magnitude of the polarization saturates to the bulk limit faster at larger wavevectors in thicker metallic films. We present a theoretical model that captures this delicate relationship between quantum tunnelling and Fermi surface spin polarization. Our high-resolution spin-based spectroscopic results suggest that the polarization current can be tuned to zero in thin insulating films forming the basis for a future spin-switch nanodevice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA