Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 51(2): 367-380.e4, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31350179

RESUMO

Epithelial barrier defects are implicated in the pathogenesis of inflammatory bowel disease (IBD); however, the role of microbiome dysbiosis and the cytokine networks orchestrating chronic intestinal inflammation in response to barrier impairment remain poorly understood. Here, we showed that altered Schaedler flora (ASF), a benign minimal microbiota, was sufficient to trigger colitis in a mouse model of intestinal barrier impairment. Colitis development required myeloid-cell-specific adaptor protein MyD88 signaling and was orchestrated by the cytokines IL-12, IL-23, and IFN-γ. Colon inflammation was driven by IL-12 during the early stages of the disease, but as the mice aged, the pathology shifted toward an IL-23-dependent inflammatory response driving disease chronicity. These findings reveal that IL-12 and IL-23 act in a temporally distinct, biphasic manner to induce microbiota-driven chronic intestinal inflammation. Similar mechanisms might contribute to the pathogenesis of IBD particularly in patients with underlying intestinal barrier defects.


Assuntos
Colite/imunologia , Doenças Inflamatórias Intestinais/imunologia , Interleucina-12/metabolismo , Interleucina-23/metabolismo , Mucosa Intestinal/patologia , Microbiota/imunologia , Animais , Doença Crônica , Modelos Animais de Doenças , Humanos , Inflamação , Interferon gama/genética , Interferon gama/metabolismo , Interleucina-12/genética , Interleucina-23/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/metabolismo , Transdução de Sinais , Quimeras de Transplante
2.
Infect Immun ; 92(2): e0031823, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38189339

RESUMO

Inflammation has a pronounced impact on the intestinal ecosystem by driving an expansion of facultative anaerobic bacteria at the cost of obligate anaerobic microbiota. This pathogen "blooming" is also a hallmark of enteric Salmonella enterica serovar Typhimurium (S. Tm) infection. Here, we analyzed the contribution of bacterial and host factors to S. Tm "blooming" in a gnotobiotic mouse model for S. Tm-induced enterocolitis. Mice colonized with the Oligo-Mouse-Microbiota (OMM12), a minimal bacterial community, develop fulminant colitis by day 4 after oral infection with wild-type S. Tm but not with an avirulent mutant. Inflammation leads to a pronounced reduction in overall intestinal bacterial loads, distinct microbial community shifts, and pathogen blooming (relative abundance >50%). S. Tm mutants attenuated in inducing gut inflammation generally elicit less pronounced microbiota shifts and reduction in total bacterial loads. In contrast, S. Tm mutants in nitrate respiration, salmochelin production, and ethanolamine utilization induced strong inflammation and S. Tm "blooming." Therefore, individual Salmonella-specific inflammation-fitness factors seem to be of minor importance for competition against this minimal microbiota in the inflamed gut. Finally, we show that antibody-mediated neutrophil depletion normalized gut microbiota loads but not intestinal inflammation or microbiota shifts. This suggests that neutrophils equally reduce pathogen and commensal bacterial loads in the inflamed gut.


Assuntos
Enterocolite , Microbiota , Salmonelose Animal , Camundongos , Animais , Salmonella typhimurium , Sorogrupo , Bactérias , Inflamação , Modelos Animais de Doenças , Vida Livre de Germes , Salmonelose Animal/microbiologia
3.
Nature ; 560(7719): 489-493, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30089902

RESUMO

Alterations in enteric microbiota are associated with several highly prevalent immune-mediated and metabolic diseases1-3, and experiments involving faecal transplants have indicated that such alterations have a causal role in at least some such conditions4-6. The postnatal period is particularly critical for the development of microbiota composition, host-microbe interactions and immune homeostasis7-9. However, the underlying molecular mechanisms of this neonatal priming period have not been defined. Here we report the identification of a host-mediated regulatory circuit of bacterial colonization that acts solely during the early neonatal period but influences life-long microbiota composition. We demonstrate age-dependent expression of the flagellin receptor Toll-like receptor 5 (TLR5) in the gut epithelium of neonate mice. Using competitive colonization experiments, we demonstrate that epithelial TLR5-mediated REG3γ production is critical for the counter-selection of colonizing flagellated bacteria. Comparative microbiota transfer experiments in neonate and adult wild-type and Tlr5-deficient germ-free mice reveal that neonatal TLR5 expression strongly influences the composition of the microbiota throughout life. Thus, the beneficial microbiota in the adult host is shaped during early infancy. This might explain why environmental factors that disturb the establishment of the microbiota during early life can affect immune homeostasis and health in adulthood.


Assuntos
Envelhecimento/imunologia , Animais Recém-Nascidos/imunologia , Microbioma Gastrointestinal/imunologia , Receptor 5 Toll-Like/imunologia , Envelhecimento/genética , Animais , Animais Recém-Nascidos/genética , Cruzamentos Genéticos , Meio Ambiente , Feminino , Flagelina/imunologia , Flagelina/metabolismo , Microbioma Gastrointestinal/genética , Homeostase , Interações entre Hospedeiro e Microrganismos , Abrigo para Animais , Mucosa Intestinal/citologia , Mucosa Intestinal/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Receptor 5 Toll-Like/genética
4.
Nature ; 563(7731): E25, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30158704

RESUMO

In Fig. 1d of this Letter, the third group along should have been labelled 'WT' rather than 'Tlr5'. This has been corrected online.

5.
J Hepatol ; 78(4): 820-835, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36681162

RESUMO

BACKGROUND & AIMS: Hepatocyte growth and proliferation depends on membrane phospholipid biosynthesis. Short-chain fatty acids (SCFAs) generated by bacterial fermentation, delivered through the gut-liver axis, significantly contribute to lipid biosynthesis. We therefore hypothesized that dysbiotic insults like antibiotic treatment not only affect gut microbiota, but also impair hepatic lipid synthesis and liver regeneration. METHODS: Stable isotope labeling and 70% partial hepatectomy (PHx) was carried out in C57Bl/6J wild-type mice, in mice treated with broad-spectrum antibiotics, in germ-free mice and mice colonized with minimal microbiota. The microbiome was analyzed by 16S rRNA gene sequencing and microbial culture. Gut content, liver, blood and primary hepatocyte organoids were tested by mass spectrometry-based lipidomics, quantitative reverse-transcription PCR (qRT-PCR), immunoblot and immunohistochemistry for expression of proliferative and lipogenic markers. Matched biopsies from hyperplastic and hypoplastic liver tissue of patients subjected to surgical intervention to induce hyperplasia were analyzed by qRT-PCR for lipogenic enzymes. RESULTS: Three days of antibiotic treatment induced persistent dysbiosis with significantly decreased beta-diversity and richness, but a massive increase of Proteobacteria, accompanied by decreased colonic SCFAs. After PHx, antibiotic-treated mice showed delayed liver regeneration, increased mortality, impaired hepatocyte proliferation and decreased hepatic phospholipid synthesis. Expression of the lipogenic enzyme SCD1 was upregulated after PHx but delayed by antibiotic treatment. Germ-free mice essentially recapitulated the phenotype of antibiotic treatment. Phospholipid biosynthesis, hepatocyte proliferation, liver regeneration and survival were rescued in gnotobiotic mice colonized with a minimal SCFA-producing microbial community. SCFAs induced the growth of murine hepatocyte organoids and hepatic SCD1 expression in mice. Further, SCD1 was required for proliferation of human hepatoma cells and was associated with liver regeneration in human patients. CONCLUSION: Gut microbiota are pivotal for hepatic membrane phospholipid biosynthesis and liver regeneration. IMPACT AND IMPLICATIONS: Gut microbiota affect hepatic lipid metabolism through the gut-liver axis, but the underlying mechanisms are poorly understood. Perturbations of the gut microbiome, e.g. by antibiotics, impair the production of bacterial metabolites, which normally serve as building blocks for membrane lipids in liver cells. As a consequence, liver regeneration and survival after liver surgery is severely impaired. Even though this study is preclinical, its results might allow physicians in the future to improve patient outcomes after liver surgery, by modulation of gut microbiota or their metabolites.


Assuntos
Membrana Celular , Microbioma Gastrointestinal , Hepatócitos , Regeneração Hepática , Fosfolipídeos , Animais , Humanos , Camundongos , Antibacterianos/farmacologia , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiologia , Hiperplasia/metabolismo , Hiperplasia/patologia , Fígado/patologia , Regeneração Hepática/fisiologia , Camundongos Endogâmicos C57BL , Fosfolipídeos/biossíntese , Fosfolipídeos/metabolismo , RNA Ribossômico 16S , Hepatócitos/metabolismo , Membrana Celular/metabolismo
6.
Nature ; 551(7682): 585-589, 2017 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-29143823

RESUMO

A Western lifestyle with high salt consumption can lead to hypertension and cardiovascular disease. High salt may additionally drive autoimmunity by inducing T helper 17 (TH17) cells, which can also contribute to hypertension. Induction of TH17 cells depends on gut microbiota; however, the effect of salt on the gut microbiome is unknown. Here we show that high salt intake affects the gut microbiome in mice, particularly by depleting Lactobacillus murinus. Consequently, treatment of mice with L. murinus prevented salt-induced aggravation of actively induced experimental autoimmune encephalomyelitis and salt-sensitive hypertension by modulating TH17 cells. In line with these findings, a moderate high-salt challenge in a pilot study in humans reduced intestinal survival of Lactobacillus spp., increased TH17 cells and increased blood pressure. Our results connect high salt intake to the gut-immune axis and highlight the gut microbiome as a potential therapeutic target to counteract salt-sensitive conditions.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Lactobacillus/efeitos dos fármacos , Lactobacillus/isolamento & purificação , Cloreto de Sódio/farmacologia , Células Th17/efeitos dos fármacos , Células Th17/imunologia , Animais , Autoimunidade/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/induzido quimicamente , Encefalomielite Autoimune Experimental/microbiologia , Encefalomielite Autoimune Experimental/patologia , Encefalomielite Autoimune Experimental/terapia , Fezes/microbiologia , Humanos , Hipertensão/induzido quimicamente , Ácidos Indolacéticos/metabolismo , Indóis/metabolismo , Intestinos/citologia , Intestinos/efeitos dos fármacos , Intestinos/imunologia , Intestinos/microbiologia , Lactobacillus/imunologia , Ativação Linfocitária/efeitos dos fármacos , Contagem de Linfócitos , Masculino , Camundongos , Projetos Piloto , Cloreto de Sódio/administração & dosagem , Simbiose , Células Th17/citologia , Triptofano/metabolismo
7.
Gastroenterology ; 159(6): 2130-2145.e5, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32805279

RESUMO

BACKGROUND & AIMS: After birth, the immune system matures via interactions with microbes in the gut. The S100 calcium binding proteins S100A8 and S100A9, and their extracellular complex form, S100A8-A9, are found in high amounts in human breast milk. We studied levels of S100A8-A9 in fecal samples (also called fecal calprotectin) from newborns and during infancy, and their effects on development of the intestinal microbiota and mucosal immune system. METHODS: We collected stool samples (n = 517) from full-term (n = 72) and preterm infants (n = 49) at different timepoints over the first year of life (days 1, 3, 10, 30, 90, 180, and 360). We measured levels of S100A8-A9 by enzyme-linked immunosorbent assay and analyzed fecal microbiomes by 16S sRNA gene sequencing. We also obtained small and large intestine biopsies from 8 adults and 10 newborn infants without inflammatory bowel diseases (controls) and 8 infants with necrotizing enterocolitis and measured levels of S100A8 by immunofluorescence microscopy. Children were followed for 2.5 years and anthropometric data and medical information on infections were collected. We performed studies with newborn C57BL/6J wild-type and S100a9-/- mice (which also lack S100A8). Some mice were fed or given intraperitoneal injections of S100A8 or subcutaneous injections of Staphylococcus aureus. Blood and intestine, mesenterial and celiac lymph nodes were collected; cells and cytokines were measured by flow cytometry and studied in cell culture assays. Colon contents from mice were analyzed by culture-based microbiology assays. RESULTS: Loss of S100A8 and S100A9 in mice altered the phenotypes of colonic lamina propria macrophages, compared with wild-type mice. Intestinal tissues from neonatal S100-knockout mice had reduced levels of CX3CR1 protein, and Il10 and Tgfb1 mRNAs, compared with wild-type mice, and fewer T-regulatory cells. S100-knockout mice weighed 21% more than wild-type mice at age 8 weeks and a higher proportion developed fatal sepsis during the neonatal period. S100-knockout mice had alterations in their fecal microbiomes, with higher abundance of Enterobacteriaceae. Feeding mice S100 at birth prevented the expansion of Enterobacteriaceae, increased numbers of T-regulatory cells and levels of CX3CR1 protein and Il10 mRNA in intestine tissues, and reduced body weight and death from neonatal sepsis. Fecal samples from term infants, but not preterm infants, had significantly higher levels of S100A8-A9 during the first 3 months of life than fecal samples from adults; levels decreased to adult levels after weaning. Fecal samples from infants born by cesarean delivery had lower levels of S100A8-A9 than from infants born by vaginal delivery. S100 proteins were expressed by lamina propria macrophages in intestinal tissues from infants, at higher levels than in intestinal tissues from adults. High fecal levels of S100 proteins, from 30 days to 1 year of age, were associated with higher abundance of Actinobacteria and Bifidobacteriaceae, and lower abundance of Gammaproteobacteria-particularly opportunistic Enterobacteriaceae. A low level of S100 proteins in infants' fecal samples associated with development of sepsis and obesity by age 2 years. CONCLUSION: S100A8 and S100A9 regulate development of the intestinal microbiota and immune system in neonates. Nutritional supplementation with these proteins might aide in development of preterm infants and prevent microbiota-associated disorders in later years.


Assuntos
Calgranulina A/metabolismo , Calgranulina B/metabolismo , Disbiose/imunologia , Microbioma Gastrointestinal/imunologia , Adulto , Animais , Biópsia , Calgranulina A/administração & dosagem , Calgranulina A/análise , Calgranulina B/análise , Calgranulina B/genética , Pré-Escolar , Colo/microbiologia , Colo/patologia , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Disbiose/microbiologia , Disbiose/prevenção & controle , Enterocolite Necrosante/epidemiologia , Enterocolite Necrosante/imunologia , Enterocolite Necrosante/microbiologia , Enterocolite Necrosante/prevenção & controle , Fezes/química , Fezes/microbiologia , Feminino , Seguimentos , Microbioma Gastrointestinal/genética , Humanos , Imunidade nas Mucosas , Lactente , Recém-Nascido , Recém-Nascido Prematuro/imunologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Knockout , Obesidade/epidemiologia , Obesidade/imunologia , Obesidade/microbiologia , Obesidade/prevenção & controle , RNA Ribossômico 16S/genética , Sepse/epidemiologia , Sepse/imunologia , Sepse/microbiologia , Sepse/prevenção & controle
8.
Int J Med Microbiol ; 311(3): 151482, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33636479

RESUMO

With the increased interest in the microbiome research, gnotobiotic animals and techniques emerged again as valuable tools to investigate functional effects of host-microbe and microbe-microbe interactions. The increased demand for gnotobiotic experiments has resulted in the greater need for housing systems for short-term maintenance of gnotobiotic animals. During the last six years, the gnotobiotic facility of the Hannover Medical School has worked intensively with different housing systems for gnotobiotic animals. Here, we report our experience in handling, contamination incidence, and monitoring strategies that we apply for controlling gnotobiotic experiments. From our experience, the risk of introducing contaminants to animals housed in microisolator cages is higher than in isolators. However, with strict operating protocols, the contamination rate in these systems can be minimized. In addition to spore-forming bacteria and fungi from the environment, spore-forming bacteria from defined bacterial communities used in experiments represent the major risk for contamination of gnotobiotic experiments performed in microisolator cages. The presence/absence of contaminants in germ-free animals can be easily monitored by preparation of wet mounts and Gram staining of fecal samples. Contaminants in animals colonized with specific microorganisms need to be tracked with methods such as next-generation sequencing. However, when using PCR-based methods it is important to consider that relatively small amounts of bacterial DNA detected likely originates from food, bedding, or reagents and is not to be interpreted as true contamination.


Assuntos
Vida Livre de Germes , Microbiota , Animais , Bactérias/genética , Fezes , Incidência
9.
Nature ; 513(7516): 90-4, 2014 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-25132550

RESUMO

Necroptosis has emerged as an important pathway of programmed cell death in embryonic development, tissue homeostasis, immunity and inflammation. RIPK1 is implicated in inflammatory and cell death signalling and its kinase activity is believed to drive RIPK3-mediated necroptosis. Here we show that kinase-independent scaffolding RIPK1 functions regulate homeostasis and prevent inflammation in barrier tissues by inhibiting epithelial cell apoptosis and necroptosis. Intestinal epithelial cell (IEC)-specific RIPK1 knockout caused IEC apoptosis, villus atrophy, loss of goblet and Paneth cells and premature death in mice. This pathology developed independently of the microbiota and of MyD88 signalling but was partly rescued by TNFR1 (also known as TNFRSF1A) deficiency. Epithelial FADD ablation inhibited IEC apoptosis and prevented the premature death of mice with IEC-specific RIPK1 knockout. However, mice lacking both RIPK1 and FADD in IECs displayed RIPK3-dependent IEC necroptosis, Paneth cell loss and focal erosive inflammatory lesions in the colon. Moreover, a RIPK1 kinase inactive knock-in delayed but did not prevent inflammation caused by FADD deficiency in IECs or keratinocytes, showing that RIPK3-dependent necroptosis of FADD-deficient epithelial cells only partly requires RIPK1 kinase activity. Epidermis-specific RIPK1 knockout triggered keratinocyte apoptosis and necroptosis and caused severe skin inflammation that was prevented by RIPK3 but not FADD deficiency. These findings revealed that RIPK1 inhibits RIPK3-mediated necroptosis in keratinocytes in vivo and identified necroptosis as a more potent trigger of inflammation compared with apoptosis. Therefore, RIPK1 is a master regulator of epithelial cell survival, homeostasis and inflammation in the intestine and the skin.


Assuntos
Apoptose , Células Epiteliais/citologia , Células Epiteliais/patologia , Homeostase , Necrose , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Animais , Caspase 8/metabolismo , Sobrevivência Celular , Células Epiteliais/metabolismo , Proteína de Domínio de Morte Associada a Fas/deficiência , Proteína de Domínio de Morte Associada a Fas/metabolismo , Feminino , Inflamação/metabolismo , Inflamação/patologia , Mucosa Intestinal/metabolismo , Intestinos/citologia , Intestinos/patologia , Queratinócitos/metabolismo , Queratinócitos/patologia , Masculino , Camundongos , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/metabolismo , Celulas de Paneth/metabolismo , Celulas de Paneth/patologia , Proteína Serina-Treonina Quinases de Interação com Receptores/deficiência , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Receptores Tipo I de Fatores de Necrose Tumoral/deficiência , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Pele/citologia , Pele/metabolismo , Pele/patologia
10.
Eur J Nutr ; 58(5): 1933-1945, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29926176

RESUMO

PURPOSE: Experimental liver steatosis induced by overfeeding is associated with enhanced gut permeability and endotoxin translocation to the liver. We examined the role of the gut microbiota for steatosis formation by performing the feeding experiments in mice raised under conventional and germ-free (GF) housing. METHODS: Adult wild-type and GF mice were fed a Western-style diet (WSD) or a control diet (CD), the latter combined with liquid fructose supplementation (F) or not, for 8 weeks. Markers of liver steatosis and gut permeability were measured after intervention. RESULTS: Mice fed a WSD increased body weight compared to those fed a CD (p < 0.01) under conventional, but not under GF conditions. Increased liver weight, liver-to-body-weight ratio and hepatic triglycerides observed in both the WSD and the CD + F groups, when compared with the CD group, were not apparent under GF conditions, whereas elevated plasma triglycerides were visible (p < 0.05). Wild-type mice fed a WSD or a CD + F, respectively, had thinner adherent mucus layer compared to those fed a CD (p < 0.01), whereas GF mice had always a thin mucus layer independently of the diet. GF mice fed a CD showed increased plasma levels of FITC-dextran 4000 (1.9-fold, p < 0.05) and intestinal fatty acid-binding protein-2 (2.4-fold, p < 0.05) compared with wild-type mice. CONCLUSIONS: GF housing results in an impaired weight gain and a lack of steatosis following a WSD. Also the fructose-induced steatosis, which is unrelated to body weight changes, is absent in GF mice. Thus, diet-induced experimental liver steatosis depends in multiple ways on intestinal bacteria.


Assuntos
Dieta Ocidental , Frutose/administração & dosagem , Hepatopatia Gordurosa não Alcoólica/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Microbioma Gastrointestinal , Mucosa Intestinal/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
11.
PLoS Pathog ; 12(5): e1005616, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27159323

RESUMO

Enteropathogenic Escherichia coli (EPEC) represents a major causative agent of infant diarrhea associated with significant morbidity and mortality in developing countries. Although studied extensively in vitro, the investigation of the host-pathogen interaction in vivo has been hampered by the lack of a suitable small animal model. Using RT-PCR and global transcriptome analysis, high throughput 16S rDNA sequencing as well as immunofluorescence and electron microscopy, we characterize the EPEC-host interaction following oral challenge of newborn mice. Spontaneous colonization of the small intestine and colon of neonate mice that lasted until weaning was observed. Intimate attachment to the epithelial plasma membrane and microcolony formation were visualized only in the presence of a functional bundle forming pili (BFP) and type III secretion system (T3SS). Similarly, a T3SS-dependent EPEC-induced innate immune response, mediated via MyD88, TLR5 and TLR9 led to the induction of a distinct set of genes in infected intestinal epithelial cells. Infection-induced alterations of the microbiota composition remained restricted to the postnatal period. Although EPEC colonized the adult intestine in the absence of a competing microbiota, no microcolonies were observed at the small intestinal epithelium. Here, we introduce the first suitable mouse infection model and describe an age-dependent, virulence factor-dependent attachment of EPEC to enterocytes in vivo.


Assuntos
Modelos Animais de Doenças , Escherichia coli Enteropatogênica/patogenicidade , Infecções por Escherichia coli/microbiologia , Interações Hospedeiro-Patógeno/fisiologia , Animais , Animais Recém-Nascidos , Suscetibilidade a Doenças/microbiologia , Escherichia coli Enteropatogênica/metabolismo , Infecções por Escherichia coli/metabolismo , Fímbrias Bacterianas/ultraestrutura , Imunofluorescência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica , Análise de Sequência com Séries de Oligonucleotídeos , Sistemas de Secreção Tipo III/metabolismo , Fatores de Virulência/metabolismo
12.
Am J Pathol ; 187(5): 1106-1120, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28411859

RESUMO

Intestinal homeostasis disturbance through intestinal barrier disruption presumably plays a key role in inflammatory bowel disease (IBD) development. Genetic and candidate gene analyses in an Il10-deficient IBD mouse model system identified Cd14 as a potentially protective candidate gene. The role of Cd14 in colitis development was determined using dextran sulfate sodium (DSS)-induced acute and an Il10-deficiency-induced chronic model of intestinal inflammation. Intestinal permeability was investigated by fluorescein isothiocyanate-dextran uptake assay, quantitative RT-PCR analysis of tight junction proteins, myosin light chain kinase, and proinflammatory cytokine expression. Immunohistological staining of occludin, Ki-67, NF-κB-p65, and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay was performed, and intestinal inflammation severity was evaluated histologically. Untreated B6-Cd14-/- mice and wild-type controls did not differ in intestinal barrier function. However, DSS-treated Cd14-deficient and B6-Il10-/-Cd14-/- mice exhibited more severe intestinal barrier disruption, with increased histological scores and proinflammatory cytokine expression, compared to controls. Therefore, Cd14 deficiency did not influence epithelial integrity under steady-state conditions but caused intestinal barrier dysfunction under inflammation. As expected, CD14 overexpression increased barrier integrity. No difference in intestinal epithelial NF-κB translocation was observed between the investigated groups. Intestinal myosin light chain kinase expression decreased in Cd14-deficient mice under steady-state conditions and in the chronic model, whereas no difference was detected in the DSS models. Thus, CD14 plays a protective role in IBD development by enhancing intestinal barrier function.


Assuntos
Doenças Inflamatórias Intestinais/fisiopatologia , Mucosa Intestinal/fisiologia , Receptores de Lipopolissacarídeos/fisiologia , Doença Aguda , Animais , Colite/fisiopatologia , Colite/prevenção & controle , Colo/metabolismo , Modelos Animais de Doenças , Interleucina-10/deficiência , Receptores de Lipopolissacarídeos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Quinase de Cadeia Leve de Miosina/metabolismo , NF-kappa B/metabolismo , Permeabilidade , RNA Mensageiro/metabolismo , Fator de Necrose Tumoral alfa/fisiologia , Regulação para Cima
13.
PLoS Pathog ; 11(7): e1005008, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26133982

RESUMO

Glycans play important roles in host-microbe interactions. Tissue-specific expression patterns of the blood group glycosyltransferase ß-1,4-N-acetylgalactosaminyltransferase 2 (B4galnt2) are variable in wild mouse populations, and loss of B4galnt2 expression is associated with altered intestinal microbiota. We hypothesized that variation in B4galnt2 expression alters susceptibility to intestinal pathogens. To test this, we challenged mice genetically engineered to express different B4galnt2 tissue-specific patterns with a Salmonella Typhimurium infection model. We found B4galnt2 intestinal expression was strongly associated with bacterial community composition and increased Salmonella susceptibility as evidenced by increased intestinal inflammatory cytokines and infiltrating immune cells. Fecal transfer experiments demonstrated a crucial role of the B4galnt2-dependent microbiota in conferring susceptibility to intestinal inflammation, while epithelial B4galnt2 expression facilitated epithelial invasion of S. Typhimurium. These data support a critical role for B4galnt2 in gastrointestinal infections. We speculate that B4galnt2-specific differences in host susceptibility to intestinal pathogens underlie the strong signatures of balancing selection observed at the B4galnt2 locus in wild mouse populations.


Assuntos
Microbioma Gastrointestinal/genética , Predisposição Genética para Doença/genética , Mucosa Intestinal/microbiologia , N-Acetilgalactosaminiltransferases/biossíntese , Salmonelose Animal/genética , Animais , Ensaio de Imunoadsorção Enzimática , Interações Hospedeiro-Parasita/fisiologia , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , N-Acetilgalactosaminiltransferases/genética , Reação em Cadeia da Polimerase em Tempo Real , Salmonelose Animal/microbiologia , Salmonella typhimurium , Transfecção
14.
Gut ; 65(2): 225-37, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25887379

RESUMO

OBJECTIVES: Dysbiosis of the intestinal microbiota is associated with Crohn's disease (CD). Functional evidence for a causal role of bacteria in the development of chronic small intestinal inflammation is lacking. Similar to human pathology, TNF(deltaARE) mice develop a tumour necrosis factor (TNF)-driven CD-like transmural inflammation with predominant ileal involvement. DESIGN: Heterozygous TNF(deltaARE) mice and wildtype (WT) littermates were housed under conventional (CONV), specific pathogen-free (SPF) and germ-free (GF) conditions. Microbial communities were analysed by high-throughput 16S ribosomal RNA gene sequencing. Metaproteomes were measured using LC-MS. Temporal and spatial resolution of disease development was followed after antibiotic treatment and transfer of microbial communities into GF mice. Granulocyte infiltration and Paneth cell function was assessed by immunofluorescence and gene expression analysis. RESULTS: GF-TNF(deltaARE) mice were free of inflammation in the gut and antibiotic treatment of CONV-TNF(deltaARE) mice attenuated ileitis but not colitis, demonstrating that disease severity and location are microbiota-dependent. SPF-TNF(deltaARE) mice developed distinct ileitis-phenotypes associated with gradual loss of antimicrobial defence. 16S analysis and metaproteomics revealed specific compositional and functional alterations of bacterial communities in inflamed mice. Transplantation of disease-associated but not healthy microbiota transmitted CD-like ileitis to GF-TNF(deltaARE) recipients and triggered loss of lysozyme and cryptdin-2 expression. Monoassociation of GF-TNF(deltaARE) mice with the human CD-related Escherichia coli LF82 did not induce ileitis. CONCLUSIONS: We provide clear experimental evidence for the causal role of gut bacterial dysbiosis in the development of chronic ileal inflammation with subsequent failure of Paneth cell function.


Assuntos
Doença de Crohn/etiologia , Disbiose/complicações , Ileíte/etiologia , Intestinos/microbiologia , Animais , Antibacterianos/farmacologia , Colite , Fluorimunoensaio , Vida Livre de Germes , Ileíte/microbiologia , Inflamação/fisiopatologia , Camundongos , Microbiota/fisiologia , Fator de Necrose Tumoral alfa
15.
Int J Med Microbiol ; 306(5): 343-355, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27053239

RESUMO

The intestinal microbiota is involved in many physiological processes and it is increasingly recognized that differences in community composition can influence the outcome of a variety of murine models used in biomedical research. In an effort to describe and account for the variation in intestinal microbiota composition across the animal facilities of participating members of the DFG Priority Program 1656 "Intestinal Microbiota", we performed a survey of C57BL/6J mice from 21 different mouse rooms/facilities located at 13 different institutions across Germany. Fresh feces was sampled from five mice per room/facility using standardized procedures, followed by extraction and 16S rRNA gene profiling (V1-V2 region, Illumina MiSeq) at both the DNA and RNA (reverse transcribed to cDNA) level. In order to determine the variables contributing to bacterial community differences, we collected detailed questionnaires of animal husbandry practices and incorporated this information into our analyses. We identified considerable variation in a number of descriptive aspects including the proportions of major phyla, alpha- and beta diversity, all of which displayed significant associations to specific aspects of husbandry. Salient findings include a reduction in alpha diversity with the use of irradiated chow, an increase in inter-individual variability (beta diversity) with respect to barrier access and open cages and an increase in bacterial community divergence with time since importing from a vendor. We further observe a high degree of facility-level individuality, which is likely due to each facility harboring its own unique combination of multiple varying attributes of animal husbandry. While it is important to account and control for such differences between facilities, the documentation of such diversity may also serve as a valuable future resource for investigating the origins of microbial-driven host phenotypes.


Assuntos
Criação de Animais Domésticos/métodos , Fezes/microbiologia , Microbioma Gastrointestinal , Animais , Análise por Conglomerados , DNA Ribossômico/química , DNA Ribossômico/genética , Alemanha , Masculino , Camundongos Endogâmicos C57BL , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Inquéritos e Questionários
16.
Gut ; 64(4): 601-10, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25379949

RESUMO

OBJECTIVES: Intestinal epithelial cells (IEC) express toll-like receptors (TLR) that facilitate microbial recognition. Stimulation of TLR ligands induces a transient increase in epithelial cell shedding, a mechanism that serves the antibacterial and antiviral host defence of the epithelium and promotes elimination of intracellular pathogens. Although activation of the extrinsic apoptosis pathway has been described during inflammatory shedding, its functional involvement is currently unclear. DESIGN: We investigated the functional involvement of caspase-8 signalling in microbial-induced intestinal cell shedding by injecting Lipopolysaccharide (LPS) to mimic bacterial pathogens and poly(I:C) as a probe for RNA viruses in vivo. RESULTS: TLR stimulation of IEC was associated with a rapid activation of caspase-8 and increased epithelial cell shedding. In mice with an epithelial cell-specific deletion of caspase-8 TLR stimulation caused Rip3-dependent epithelial necroptosis instead of apoptosis. Mortality and tissue damage were more severe in mice in which IECs died by necroptosis than apoptosis. Inhibition of receptor-interacting protein (Rip) kinases rescued the epithelium from TLR-induced gut damage. TLR3-induced necroptosis was directly mediated via TRIF-dependent pathways, independent of Tnf-α and type III interferons, whereas TLR4-induced tissue damage was critically dependent on Tnf-α. CONCLUSIONS: Together, our data demonstrate an essential role for caspase-8 in maintaining the gut barrier in response to mucosal pathogens by permitting inflammatory shedding and preventing necroptosis of infected cells. These data suggest that therapeutic strategies targeting the cell death machinery represent a promising new option for the treatment of inflammatory and infective enteropathies.


Assuntos
Caspase 8/fisiologia , Células Epiteliais/fisiologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/fisiologia , Fator de Necrose Tumoral alfa/fisiologia , Animais , Camundongos , Transdução de Sinais
17.
Gut Microbes ; 16(1): 2363015, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38845453

RESUMO

Gut microbiota is responsible for essential functions in human health. Several communication axes between gut microbiota and other organs via neural, endocrine, and immune pathways have been described, and perturbation of gut microbiota composition has been implicated in the onset and progression of an emerging number of diseases. Here, we analyzed peripheral nerves, dorsal root ganglia (DRG), and skeletal muscles of neonatal and young adult mice with the following gut microbiota status: a) germ-free (GF), b) gnotobiotic, selectively colonized with 12 specific gut bacterial strains (Oligo-Mouse-Microbiota, OMM12), or c) natural complex gut microbiota (CGM). Stereological and morphometric analyses revealed that the absence of gut microbiota impairs the development of somatic median nerves, resulting in smaller diameter and hypermyelinated axons, as well as in smaller unmyelinated fibers. Accordingly, DRG and sciatic nerve transcriptomic analyses highlighted a panel of differentially expressed developmental and myelination genes. Interestingly, the type III isoform of Neuregulin1 (NRG1), known to be a neuronal signal essential for Schwann cell myelination, was overexpressed in young adult GF mice, with consequent overexpression of the transcription factor Early Growth Response 2 (Egr2), a fundamental gene expressed by Schwann cells at the onset of myelination. Finally, GF status resulted in histologically atrophic skeletal muscles, impaired formation of neuromuscular junctions, and deregulated expression of related genes. In conclusion, we demonstrate for the first time a gut microbiota regulatory impact on proper development of the somatic peripheral nervous system and its functional connection to skeletal muscles, thus suggesting the existence of a novel 'Gut Microbiota-Peripheral Nervous System-axis.'


Assuntos
Gânglios Espinais , Microbioma Gastrointestinal , Junção Neuromuscular , Animais , Junção Neuromuscular/microbiologia , Camundongos , Gânglios Espinais/metabolismo , Gânglios Espinais/microbiologia , Vida Livre de Germes , Nervos Periféricos/microbiologia , Nervos Periféricos/crescimento & desenvolvimento , Músculo Esquelético/microbiologia , Camundongos Endogâmicos C57BL , Neuregulina-1/metabolismo , Neuregulina-1/genética , Masculino , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Células de Schwann/microbiologia , Células de Schwann/metabolismo
18.
J Biosci ; 482023.
Artigo em Inglês | MEDLINE | ID: mdl-36785487

RESUMO

Enteric glial cells (EGCs) were shown to maintain the barrier integrity and immune homeostasis of the bowel. Postnatally, EGCs develop from progenitor cells located in the myenteric plexus and are continuously replenished through adulthood. Both, murine EGC development and replenishment were shown to depend on the microbiome. The underlying mechanisms are still unknown, and we hypothesized that the myeloid differentiation primary response protein 88 (Myd88) or toll-like receptor signaling pathways may be involved. Adult and neonatal C57BL/6 wild-type (wt) and Myd88-/- mice were housed under specific pathogen-free (SPF) or germ-free (GF) conditions. GF mice were further conventionalized by gavaging stools from, and cohousing with, SPF mice having intact microbiomes. The small bowels were harvested at various time points, and immunohistochemistry and qPCR analysis of EGC markers in the muscularis externa and mucosa were performed. In wt mice, after conventionalization, the glial cell-specific markers, glial fibrillary acidic protein (GFAP) and S100 calcium-binding protein ß (S100ß), were upregulated in the mucosa and muscularis externa. In Myd88-/- mice, this upregulation did not occur. Importantly, GFAP (only in the mucosa) and S100ß (in both the mucosa and muscularis externa) were significantly reduced in conventionalized Myd88-/- mice compared with the conventionalized wt mice. In neonatal mice, the gene expressions of GFAP and S100ß increased between the day of birth (P0) and postnatal day 15 (P15) in the mucosa and muscularis externa of both wt and Myd88-/- mice. Notably, in the mucosa but not the muscularis externa, at P15, the gene expressions of GFAP and S100ß were significantly reduced in Myd88-/-. Our data demonstrated that postnatal development and replenishment of EGCs require intestinal microbiota and depend on Myd88. The specific upstream mechanisms may involve toll-like-receptor recognition of the microbiota and will be the subject of further research.


Assuntos
Microbiota , Fator 88 de Diferenciação Mieloide , Camundongos , Animais , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Camundongos Endogâmicos C57BL , Neuroglia/metabolismo , Diferenciação Celular/genética
19.
Nutrients ; 15(3)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36771343

RESUMO

Germ-free (GF) rodents have become a valuable tool for studying the role of intestinal microbes on the host physiology. The major characteristic of GF rodents is an enlarged cecum. The accumulation of mucopolysaccharides, digestion enzymes and water in the intestinal lumen drives this phenotype. Microbial colonization normalizes the cecum size in ex-GF animals. However, whether strain genetics influences the cecal enlargement is unknown. Here we investigated the impact of mouse genetic background on the cecal size in five GF strains frequently used in biomedical research. The cecal weight of GF mice on B6 background (B6J and B6N) represented up to 20% of total body weight. GF NMRI and BALBc mice showed an intermediate phenotype of 5-10%, and those on the C3H background of up to 5%. Reduced cecal size in GF C3H mice correlated with decreased water content, increased expression of water transporters, and reduced production of acidic mucins, but was independent of the level of digestive enzymes in the lumen. In contrast, GF B6J mice with greatly enlarged cecum showed increased water content and a distinct metabolic profile characterized by altered amino acid and bile acid metabolism, and increased acidic mucin production. Together, our results show that genetic background influences the cecal enlargement by regulating the water transport, production of acidic mucins, and metabolic profiles.


Assuntos
Microbioma Gastrointestinal , Camundongos , Animais , Microbioma Gastrointestinal/fisiologia , Camundongos Endogâmicos C3H , Ceco/metabolismo , Intestinos , Mucinas/genética , Mucinas/metabolismo
20.
Microbiome ; 11(1): 66, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-37004103

RESUMO

BACKGROUND: Crohn's disease (CD) is associated with changes in the microbiota, and murine models of CD-like ileo-colonic inflammation depend on the presence of microbial triggers. Increased abundance of unknown Clostridiales and the microscopic detection of filamentous structures close to the epithelium of Tnf ΔARE mice, a mouse model of CD-like ileitis pointed towards segmented filamentous bacteria (SFB), a commensal mucosal adherent bacterium involved in ileal inflammation. RESULTS: We show that the abundance of SFB strongly correlates with the severity of CD-like ileal inflammation in two mouse models of ileal inflammation, including Tnf ΔARE and SAMP/Yit mice. SFB mono-colonization of germ-free Tnf ΔARE mice confirmed the causal link and resulted in severe ileo-colonic inflammation, characterized by elevated tissue levels of Tnf and Il-17A, neutrophil infiltration and loss of Paneth and goblet cell function. Co-colonization of SFB in human-microbiota associated Tnf ΔARE mice confirmed that SFB presence is indispensable for disease development. Screening of 468 ileal and colonic mucosal biopsies from adult and pediatric IBD patients, using previously published and newly designed human SFB-specific primer sets, showed no presence of SFB in human tissue samples, suggesting a species-specific functionality of the pathobiont. Simulating the human relevant therapeutic effect of exclusive enteral nutrition (EEN), EEN-like purified diet antagonized SFB colonization and prevented disease development in Tnf ΔARE mice, providing functional evidence for the protective mechanism of diet in modulating microbiota-dependent inflammation in IBD. CONCLUSIONS: We identified a novel pathogenic role of SFB in driving severe CD-like ileo-colonic inflammation characterized by loss of Paneth and goblet cell functions in Tnf ΔARE mice. A purified diet antagonized SFB colonization and prevented disease development in Tnf ΔARE mice in contrast to a fiber-containing chow diet, clearly demonstrating the important role of diet in modulating a novel IBD-relevant pathobiont and supporting a direct link between diet and microbial communities in mediating protective functions. Video Abstract.


Assuntos
Doença de Crohn , Ileíte , Adulto , Humanos , Camundongos , Animais , Criança , Doença de Crohn/microbiologia , Inflamação , Ileíte/microbiologia , Ileíte/patologia , Dieta , Bactérias/genética , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA