Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 193
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 172(5): 966-978.e12, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29474922

RESUMO

Ebola virus nucleoprotein (eNP) assembles into higher-ordered structures that form the viral nucleocapsid (NC) and serve as the scaffold for viral RNA synthesis. However, molecular insights into the NC assembly process are lacking. Using a hybrid approach, we characterized the NC-like assembly of eNP, identified novel regulatory elements, and described how these elements impact function. We generated a three-dimensional structure of the eNP NC-like assembly at 5.8 Å using electron cryo-microscopy and identified a new regulatory role for eNP helices α22-α23. Biochemical, biophysical, and mutational analyses revealed that inter-eNP contacts within α22-α23 are critical for viral NC assembly and regulate viral RNA synthesis. These observations suggest that the N terminus and α22-α23 of eNP function as context-dependent regulatory modules (CDRMs). Our current study provides a framework for a structural mechanism for NC-like assembly and a new therapeutic target.


Assuntos
Microscopia Crioeletrônica , Ebolavirus/fisiologia , Ebolavirus/ultraestrutura , Nucleocapsídeo/ultraestrutura , Nucleoproteínas/ultraestrutura , Montagem de Vírus , Modelos Biológicos , Proteínas Mutantes/química , Mutação/genética , Nucleoproteínas/química , Multimerização Proteica , Estrutura Secundária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , RNA Viral/biossíntese , RNA Viral/química , RNA Viral/metabolismo
2.
Cell ; 175(7): 1917-1930.e13, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30550789

RESUMO

Ebola virus (EBOV) infection often results in fatal illness in humans, yet little is known about how EBOV usurps host pathways during infection. To address this, we used affinity tag-purification mass spectrometry (AP-MS) to generate an EBOV-host protein-protein interaction (PPI) map. We uncovered 194 high-confidence EBOV-human PPIs, including one between the viral transcription regulator VP30 and the host ubiquitin ligase RBBP6. Domain mapping identified a 23 amino acid region within RBBP6 that binds to VP30. A crystal structure of the VP30-RBBP6 peptide complex revealed that RBBP6 mimics the viral nucleoprotein (NP) binding to the same interface of VP30. Knockdown of endogenous RBBP6 stimulated viral transcription and increased EBOV replication, whereas overexpression of either RBBP6 or the peptide strongly inhibited both. These results demonstrate the therapeutic potential of biologics that target this interface and identify additional PPIs that may be leveraged for novel therapeutic strategies.


Assuntos
Proteínas de Transporte , Proteínas de Ligação a DNA , Ebolavirus/fisiologia , Doença pelo Vírus Ebola/metabolismo , Fatores de Transcrição , Proteínas Virais , Replicação Viral/fisiologia , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Cristalografia por Raios X , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células HEK293 , Células HeLa , Doença pelo Vírus Ebola/genética , Doença pelo Vírus Ebola/patologia , Humanos , Mapeamento de Interação de Proteínas , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo
3.
Nat Immunol ; 16(5): 485-94, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25822250

RESUMO

The human helicase senataxin (SETX) has been linked to the neurodegenerative diseases amyotrophic lateral sclerosis (ALS4) and ataxia with oculomotor apraxia (AOA2). Here we identified a role for SETX in controlling the antiviral response. Cells that had undergone depletion of SETX and SETX-deficient cells derived from patients with AOA2 had higher expression of antiviral mediators in response to infection than did wild-type cells. Mechanistically, we propose a model whereby SETX attenuates the activity of RNA polymerase II (RNAPII) at genes stimulated after a virus is sensed and thus controls the magnitude of the host response to pathogens and the biogenesis of various RNA viruses (e.g., influenza A virus and West Nile virus). Our data indicate a potentially causal link among inborn errors in SETX, susceptibility to infection and the development of neurologic disorders.


Assuntos
Esclerose Lateral Amiotrófica/genética , Influenza Humana/imunologia , Orthomyxoviridae/fisiologia , RNA Helicases/metabolismo , RNA Polimerase II/metabolismo , Degenerações Espinocerebelares/genética , Febre do Nilo Ocidental/imunologia , Vírus do Nilo Ocidental/fisiologia , Animais , Linhagem Celular Tumoral , Chlorocebus aethiops , Citocinas/metabolismo , DNA Helicases , Cães , Regulação para Baixo , Humanos , Imunidade Inata/genética , Fator Regulador 3 de Interferon/metabolismo , Células Madin Darby de Rim Canino , Camundongos , Camundongos Knockout , Análise em Microsséries , Enzimas Multifuncionais , RNA Helicases/genética , RNA Polimerase II/genética , RNA Interferente Pequeno/genética , Ataxias Espinocerebelares/congênito , Células Vero , Replicação Viral/genética
4.
EMBO J ; 40(18): e105658, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34260076

RESUMO

The Ebola virus VP30 protein interacts with the viral nucleoprotein and with host protein RBBP6 via PPxPxY motifs that adopt non-canonical orientations, as compared to other proline-rich motifs. An affinity tag-purification mass spectrometry approach identified additional PPxPxY-containing host proteins hnRNP L, hnRNPUL1, and PEG10, as VP30 interactors. hnRNP L and PEG10, like RBBP6, inhibit viral RNA synthesis and EBOV infection, whereas hnRNPUL1 enhances. RBBP6 and hnRNP L modulate VP30 phosphorylation, increase viral transcription, and exert additive effects on viral RNA synthesis. PEG10 has more modest inhibitory effects on EBOV replication. hnRNPUL1 positively affects viral RNA synthesis but in a VP30-independent manner. Binding studies demonstrate variable capacity of the PPxPxY motifs from these proteins to bind VP30, define PxPPPPxY as an optimal binding motif, and identify the fifth proline and the tyrosine as most critical for interaction. Competition binding and hydrogen-deuterium exchange mass spectrometry studies demonstrate that each protein binds a similar interface on VP30. VP30 therefore presents a novel proline recognition domain that is targeted by multiple host proteins to modulate viral transcription.


Assuntos
Ebolavirus/fisiologia , Doença pelo Vírus Ebola/metabolismo , Doença pelo Vírus Ebola/virologia , Prolina/metabolismo , Tirosina/metabolismo , Proteínas de Transporte , Regulação Viral da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Ligação Proteica , Replicação Viral
5.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35193958

RESUMO

Mycobacterium tuberculosis (Mtb) possesses five type VII secretion systems (T7SS), virulence determinants that include the secretion apparatus and associated secretion substrates. Mtb strains deleted for the genes encoding substrates of the ESX-3 T7SS, esxG or esxH, require iron supplementation for in vitro growth and are highly attenuated in vivo. In a subset of infected mice, suppressor mutants of esxG or esxH deletions were isolated, which enabled growth to high titers or restored virulence. Suppression was conferred by mechanisms that cause overexpression of an ESX-3 paralogous region that lacks genes for the secretion apparatus but encodes EsxR and EsxS, apparent ESX-3 orphan substrates that functionally compensate for the lack of EsxG or EsxH. The mechanisms include the disruption of a transcriptional repressor and a massive 38- to 60-fold gene amplification. These data identify an iron acquisition regulon, provide insight into T7SS, and reveal a mechanism of Mtb chromosome evolution involving "accordion-type" amplification.


Assuntos
Mycobacterium tuberculosis/genética , Sistemas de Secreção Tipo VII/genética , Animais , Sistemas de Secreção Bacterianos/genética , Evolução Biológica , Evolução Molecular , Amplificação de Genes/genética , Camundongos , Mycobacterium tuberculosis/metabolismo , Sistemas de Secreção Tipo VII/fisiologia , Virulência , Fatores de Virulência/genética
6.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33649232

RESUMO

Human respiratory syncytial virus (RSV) nonstructural protein 2 (NS2) inhibits host interferon (IFN) responses stimulated by RSV infection by targeting early steps in the IFN-signaling pathway. But the molecular mechanisms related to how NS2 regulates these processes remain incompletely understood. To address this gap, here we solved the X-ray crystal structure of NS2. This structure revealed a unique fold that is distinct from other known viral IFN antagonists, including RSV NS1. We also show that NS2 directly interacts with an inactive conformation of the RIG-I-like receptors (RLRs) RIG-I and MDA5. NS2 binding prevents RLR ubiquitination, a process critical for prolonged activation of downstream signaling. Structural analysis, including by hydrogen-deuterium exchange coupled to mass spectrometry, revealed that the N terminus of NS2 is essential for binding to the RIG-I caspase activation and recruitment domains. N-terminal mutations significantly diminish RIG-I interactions and result in increased IFNß messenger RNA levels. Collectively, our studies uncover a previously unappreciated regulatory mechanism by which NS2 further modulates host responses and define an approach for targeting host responses.


Assuntos
Proteína DEAD-box 58 , Helicase IFIH1 Induzida por Interferon , Interferon beta , Receptores Imunológicos , Proteínas não Estruturais Virais , Cristalografia por Raios X , Proteína DEAD-box 58/química , Proteína DEAD-box 58/metabolismo , Medição da Troca de Deutério , Células HEK293 , Humanos , Helicase IFIH1 Induzida por Interferon/química , Helicase IFIH1 Induzida por Interferon/metabolismo , Interferon beta/química , Interferon beta/metabolismo , Ligação Proteica , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Receptores Imunológicos/química , Receptores Imunológicos/metabolismo , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo
7.
Immunity ; 41(4): 515-7, 2014 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-25367568

RESUMO

Because of its lethality, the Ebola virus often appears to be an invincible adversary. In Nature, Qiu et al. (2014) recently described the complete protection of nonhuman primates from deadly Ebola virus disease, even when treatment was begun as late as 5 days after infection.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Anticorpos Antivirais/uso terapêutico , Doença pelo Vírus Ebola/tratamento farmacológico , Imunização Passiva , Animais , Feminino , Masculino
8.
J Virol ; 95(19): e0065221, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34346762

RESUMO

The filovirus family includes deadly pathogens such as Ebola virus (EBOV) and Marburg virus (MARV). A substantial portion of filovirus genomes encode 5' and 3' untranslated regions (UTRs) of viral mRNAs. Select viral genomic RNA sequences corresponding to 3' UTRs are prone to editing by adenosine deaminase acting on RNA 1 (ADAR1). A reporter mRNA approach, in which different 5' or 3' UTRs were inserted into luciferase-encoding mRNAs, demonstrates that MARV 3' UTRs yield different levels of reporter gene expression, suggesting modulation of translation. The modulation occurs in cells unable to produce microRNAs (miRNAs) and can be recapitulated in a MARV minigenome assay. Deletion mutants identified negative regulatory regions at the ends of the MARV nucleoprotein (NP) and large protein (L) 3' UTRs. Apparent ADAR1 editing mutants were previously identified within the MARV NP 3' UTR. Introduction of these changes into the MARV nucleoprotein (NP) 3' UTR or deletion of the region targeted for editing enhances translation, as indicated by reporter assays and polysome analysis. In addition, the parental NP 3' UTR, but not the edited or deletion mutant NP 3' UTRs, induces a type I interferon (IFN) response upon transfection into cells. Because some EBOV isolates from the West Africa outbreak exhibited ADAR1 editing of the viral protein of 40 kDa (VP40) 3' UTR, VP40 3' UTRs with parental and edited sequences were similarly assayed. The EBOV VP40 3' UTR edits also enhanced translation, but neither the wild-type nor the edited 3' UTRs induced IFN. These findings implicate filoviral mRNA 3' UTRs as negative regulators of translation that can be inactivated by innate immune responses that induce ADAR1. IMPORTANCE UTRs comprise a large percentage of filovirus genomes and are apparent targets of editing by ADAR1, an enzyme with pro- and antiviral activities. However, the functional significance of the UTRs and ADAR1 editing has been uncertain. This study demonstrates that MARV and EBOV 3' UTRs can modulate translation, in some cases negatively. ADAR1 editing or deletion of select regions within the translation suppressing 3' UTRs relieves the negative effects of the UTRs. These data indicate that filovirus 3' UTRs contain translation regulatory elements that are modulated by activation of ADAR1, suggesting a complex interplay between filovirus gene expression and innate immunity.


Assuntos
Regiões 3' não Traduzidas , Adenosina Desaminase/metabolismo , Ebolavirus/genética , Marburgvirus/genética , Biossíntese de Proteínas , Proteínas de Ligação a RNA/metabolismo , Animais , Linhagem Celular , Ebolavirus/metabolismo , Genes Reporter , Humanos , Interferon Tipo I/biossíntese , Marburgvirus/metabolismo , MicroRNAs/genética , Mutação , Proteínas do Nucleocapsídeo/genética , Proteínas do Nucleocapsídeo/metabolismo , Polirribossomos/metabolismo , Edição de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/metabolismo
9.
J Virol ; 95(6)2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33408171

RESUMO

Infection with Zaire ebolavirus (EBOV), a member of the Filoviridae family, causes a disease characterized by high levels of viremia, aberrant inflammation, coagulopathy, and lymphopenia. EBOV initially replicates in lymphoid tissues and disseminates via dendritic cells (DCs) and monocytes to liver, spleen, adrenal gland, and other secondary organs. EBOV protein VP35 is a critical immune evasion factor that inhibits type I interferon signaling and DC maturation. Nonhuman primates (NHPs) immunized with a high dose (5 × 105 PFU) of recombinant EBOV containing a mutated VP35 (VP35m) are protected from challenge with wild-type EBOV (wtEBOV). This protection is accompanied by a transcriptional response in the peripheral blood reflecting a regulated innate immune response and a robust induction of adaptive immune genes. However, the host transcriptional response to VP35m in lymphoid tissues has not been evaluated. Therefore, we conducted a transcriptional analysis of axillary and inguinal lymph nodes and spleen tissues of NHPs infected with a low dose (2 × 104 PFU) of VP35m and then back-challenged with a lethal dose of wtEBOV. VP35m induced early transcriptional responses in lymphoid tissues that are distinct from those observed in wtEBOV challenge. Specifically, we detected robust antiviral innate and adaptive responses and fewer transcriptional changes in genes with roles in angiogenesis, apoptosis, and inflammation. Two of three macaques survived wtEBOV back-challenge, with only the nonsurvivor displaying a transcriptional response reflecting Ebola virus disease. These data suggest that VP35 is a key modulator of early host responses in lymphoid tissues, thereby regulating disease progression and severity following EBOV challenge.IMPORTANCE Zaire Ebola virus (EBOV) infection causes a severe and often fatal disease characterized by inflammation, coagulation defects, and organ failure driven by a defective host immune response. Lymphoid tissues are key sites of EBOV pathogenesis and the generation of an effective immune response to infection. A recent study demonstrated that infection with an EBOV encoding a mutant VP35, a viral protein that antagonizes host immunity, can protect nonhuman primates (NHPs) against lethal EBOV challenge. However, no studies have examined the response to this mutant EBOV in lymphoid tissues. Here, we characterize gene expression in lymphoid tissues from NHPs challenged with the mutant EBOV and subsequently with wild-type EBOV to identify signatures of a protective host response. Our findings are critical for elucidating viral pathogenesis, mechanisms of host antagonism, and the role of lymphoid organs in protective responses to EBOV to improve the development of antivirals and vaccines against EBOV.


Assuntos
Ebolavirus/patogenicidade , Doença pelo Vírus Ebola/imunologia , Tecido Linfoide/imunologia , Proteínas Virais Reguladoras e Acessórias/imunologia , Imunidade Adaptativa , Animais , Antivirais/sangue , Ebolavirus/genética , Ebolavirus/imunologia , Regulação da Expressão Gênica/imunologia , Doença pelo Vírus Ebola/sangue , Doença pelo Vírus Ebola/prevenção & controle , Doença pelo Vírus Ebola/virologia , Tecido Linfoide/virologia , Macaca fascicularis , Mutação , Baço/imunologia , Transcriptoma , Proteínas Virais Reguladoras e Acessórias/genética
10.
J Virol ; 94(14)2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32321809

RESUMO

Nipah virus (NiV) and Hendra virus (HeV), members of the Henipavirus genus in the Paramyxoviridae family, are recently emerged, highly lethal zoonotic pathogens. The NiV and HeV nonsegmented, negative-sense RNA genomes encode nine proteins, including the W protein. Expressed from the P gene through mRNA editing, W shares a common N-terminus with P and V but has a unique C-terminus. Expressed alone, W modulates innate immune responses by several mechanisms, and elimination of W from NiV alters the course of infection in experimentally infected ferrets. However, the specific host interactions that allow W to modulate innate immunity are incompletely understood. This study demonstrates that the NiV and HeV W proteins interact with all seven isoforms of the 14-3-3 family, regulatory molecules that preferentially bind phosphorylated target proteins to regulate a wide range of cellular functions. The interaction is dependent on the penultimate amino acid residue in the W sequence, a conserved, phosphorylated serine. The cocrystal structure of the W C-terminal binding motif with 14-3-3 provides only the second structure of a complex containing a mode III interactor, which is defined as a 14-3-3 interaction with a phosphoserine/phosphothreonine at the C-termini of the target protein. Transcriptomic analysis of inducible cell lines infected with an RNA virus and expressing either wild-type W or W lacking 14-3-3 binding, identifies new functions for W. These include the regulation of cellular metabolic processes, extracellular matrix organization, and apoptosis.IMPORTANCE Nipah virus (NiV) and Hendra virus (HeV), members of the Henipavirus genus, are recently emerged, highly lethal zoonotic pathogens that cause yearly outbreaks. NiV and HeV each encode a W protein that has roles in regulating host signaling pathways, including antagonism of the innate immune response. However, the mechanisms used by W to regulate these host responses are not clear. Here, characterization of the interaction of NiV and HeV W with 14-3-3 identifies modulation of 14-3-3-regulated host signaling pathways not previously associated with W, suggesting new avenues of research. The cocrystal structure of the NiV W:14-3-3 complex, as only the second structure of a 14-3-3 mode III interactor, provides further insight into this less-well-understood 14-3-3 binding motif.


Assuntos
Proteínas 14-3-3/metabolismo , Regulação da Expressão Gênica , Vírus Hendra/metabolismo , Infecções por Henipavirus/metabolismo , Vírus Nipah/metabolismo , Proteínas Virais/metabolismo , Proteínas 14-3-3/genética , Células HEK293 , Vírus Hendra/genética , Infecções por Henipavirus/genética , Humanos , Vírus Nipah/genética , Proteínas Virais/genética
11.
J Virol ; 94(13)2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32295912

RESUMO

Menglà virus (MLAV), identified in Rousettus bats, is a phylogenetically distinct member of the family Filoviridae Because the filoviruses Ebola virus (EBOV) and Marburg virus (MARV) modulate host innate immunity, MLAV VP35, VP40, and VP24 proteins were compared with their EBOV and MARV homologs for innate immune pathway modulation. In human and Rousettus cells, MLAV VP35 behaved like EBOV and MARV VP35s, inhibiting virus-induced activation of the interferon beta (IFN-ß) promoter and interferon regulatory factor 3 (IRF3) phosphorylation. MLAV VP35 also interacted with PACT, a host protein engaged by EBOV VP35 to inhibit RIG-I signaling. MLAV VP35 also inhibits PKR activation. MLAV VP40 was demonstrated to inhibit type I IFN-induced gene expression in human and bat cells. It blocked STAT1 tyrosine phosphorylation induced either by type I IFN or overexpressed Jak1, paralleling MARV VP40. MLAV VP40 also inhibited virus-induced IFN-ß promoter activation, a property shared by MARV VP40 and EBOV VP24. A Jak kinase inhibitor did not recapitulate this inhibition in the absence of viral proteins. Therefore, inhibition of Jak-STAT signaling is insufficient to explain inhibition of IFN-ß promoter activation. MLAV VP24 did not inhibit IFN-induced gene expression or bind karyopherin α proteins, properties of EBOV VP24. MLAV VP24 differed from MARV VP24 in that it failed to interact with Keap1 or activate an antioxidant response element reporter gene due to the absence of a Keap1-binding motif. These functional observations support a closer relationship of MLAV to MARV than to EBOV but also are consistent with MLAV belonging to a distinct genus.IMPORTANCE EBOV and MARV, members of the family Filoviridae, are highly pathogenic zoonotic viruses that cause severe disease in humans. Both viruses use several mechanisms to modulate the host innate immune response, and these likely contribute to the severity of disease. Here, we demonstrate that MLAV, a filovirus newly discovered in a bat, suppresses antiviral type I interferon responses in both human and bat cells. Inhibitory activities are possessed by MLAV VP35 and VP40, which parallels how MARV blocks IFN responses. However, whereas MARV activates cellular antioxidant responses through an interaction between its VP24 protein and host protein Keap1, MLAV VP24 lacks a Keap1-binding motif and fails to activate this cytoprotective response. These data indicate that MLAV possesses immune-suppressing functions that could facilitate human infection. They also support the placement of MLAV in a different genus than either EBOV or MARV.


Assuntos
Infecções por Filoviridae/fisiopatologia , Filoviridae/genética , Animais , Quirópteros/imunologia , Quirópteros/virologia , Ebolavirus , Filoviridae/metabolismo , Filoviridae/patogenicidade , Células HEK293 , Humanos , Imunidade Inata , Fator Regulador 3 de Interferon/imunologia , Fator Regulador 3 de Interferon/metabolismo , Interferon beta/imunologia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Marburgvirus , Fator 2 Relacionado a NF-E2/metabolismo , Fator de Transcrição STAT1 , Proteínas Virais/metabolismo , Proteínas Virais Reguladoras e Acessórias/genética , Proteínas Virais Reguladoras e Acessórias/metabolismo
12.
J Virol ; 94(6)2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-31852785

RESUMO

The question as to whether RNA viruses produce bona fide microRNAs (miRNAs) during infection has been the focus of intense research and debate. Recently, several groups using computational prediction methods have independently reported possible miRNA candidates produced by Ebola virus (EBOV). Additionally, efforts to detect these predicted RNA products in samples from infected animals and humans have produced positive results. However, these studies and their conclusions are predicated on the assumption that these RNA products are actually processed through, and function within, the miRNA pathway. In the present study, we performed the first rigorous assessment of the ability of filoviruses to produce miRNA products during infection of both human and bat cells. Using next-generation sequencing, we detected several candidate miRNAs from both EBOV and the closely related Marburg virus (MARV). Focusing our validation efforts on EBOV, we found evidence contrary to the idea that these small RNA products function as miRNAs. The results of our study are important because they highlight the potential pitfalls of relying on computational methods alone for virus miRNA discovery.IMPORTANCE Here, we report the discovery, via deep sequencing, of numerous noncoding RNAs (ncRNAs) derived from both EBOV and MARV during infection of both bat and human cell lines. In addition to identifying several novel ncRNAs from both viruses, we identified two EBOV ncRNAs in our sequencing data that were near-matches to computationally predicted viral miRNAs reported in the literature. Using molecular and immunological techniques, we assessed the potential of EBOV ncRNAs to function as viral miRNAs. Importantly, we found little evidence supporting this hypothesis. Our work is significant because it represents the first rigorous assessment of the potential for EBOV to encode viral miRNAs and provides evidence contrary to the existing paradigm regarding the biological role of computationally predicted EBOV ncRNAs. Moreover, our work highlights further avenues of research regarding the nature and function of EBOV ncRNAs.


Assuntos
Ebolavirus/metabolismo , MicroRNAs/metabolismo , Interferência de RNA , RNA Viral/metabolismo , Animais , Linhagem Celular , Quirópteros , Ebolavirus/genética , Humanos , Marburgvirus/genética , Marburgvirus/metabolismo , MicroRNAs/genética , RNA Viral/genética
13.
Arch Virol ; 166(12): 3513-3566, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34463877

RESUMO

In March 2021, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by four families (Aliusviridae, Crepuscuviridae, Myriaviridae, and Natareviridae), three subfamilies (Alpharhabdovirinae, Betarhabdovirinae, and Gammarhabdovirinae), 42 genera, and 200 species. Thirty-nine species were renamed and/or moved and seven species were abolished. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV.


Assuntos
Mononegavirais , Vírus , Humanos
14.
Arch Virol ; 165(12): 3023-3072, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32888050

RESUMO

In March 2020, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. At the genus rank, 20 new genera were added, two were deleted, one was moved, and three were renamed. At the species rank, 160 species were added, four were deleted, ten were moved and renamed, and 30 species were renamed. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV.


Assuntos
Mononegavirais/classificação , Terminologia como Assunto
15.
J Gen Virol ; 100(6): 911-912, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31021739

RESUMO

Members of the family Filoviridae produce variously shaped, often filamentous, enveloped virions containing linear non-segmented, negative-sense RNA genomes of 15-19 kb. Several filoviruses (e.g., Ebola virus) are pathogenic for humans and are highly virulent. Several filoviruses infect bats (e.g., Marburg virus), whereas the hosts of most other filoviruses are unknown. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on Filoviridae, which is available at www.ictv.global/report/filoviridae.


Assuntos
Filoviridae/classificação , Animais , Filoviridae/genética , Genoma Viral/genética , Humanos , RNA Viral/genética
17.
Arch Virol ; 164(4): 1233-1244, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30663023

RESUMO

In October 2018, the order Mononegavirales was amended by the establishment of three new families and three new genera, abolishment of two genera, and creation of 28 novel species. This article presents the updated taxonomy of the order Mononegavirales as now accepted by the International Committee on Taxonomy of Viruses (ICTV).


Assuntos
Mononegavirais/classificação , Mononegavirais/genética , Mononegavirais/isolamento & purificação , Filogenia , Virologia/organização & administração
18.
J Virol ; 91(22)2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28878074

RESUMO

BST2 is a host protein with dual functions in response to viral infections: it traps newly assembled enveloped virions at the plasma membrane in infected cells, and it induces NF-κB activity, especially in the context of retroviral assembly. In this study, we examined whether Ebola virus proteins affect BST2-mediated induction of NF-κB. We found that the Ebola virus matrix protein, VP40, and envelope glycoprotein, GP, each cooperate with BST2 to induce NF-κB activity, with maximal activity when all three proteins are expressed. Unlike human immunodeficiency virus type 1 Vpu protein, which antagonizes both virion entrapment and the activation of NF-κB by BST2, Ebola virus GP does not inhibit NF-κB signaling even while it antagonizes the entrapment of virus-like particles. GP from Reston ebolavirus, a nonpathogenic species in humans, showed a phenotype similar to that of GP from Zaire ebolavirus, a highly pathogenic species, in terms of both the activation of NF-κB and the antagonism of virion entrapment. Although Ebola virus VP40 and GP both activate NF-κB independently of BST2, VP40 is the more potent activator. Activation of NF-κB by the Ebola virus proteins either alone or together with BST2 requires the canonical NF-κB signaling pathway. Mechanistically, the maximal NF-κB activation by GP, VP40, and BST2 together requires the ectodomain cysteines needed for BST2 dimerization, the putative BST2 tetramerization residue L70, and Y6 of a potential hemi-ITAM motif in BST2's cytoplasmic domain. BST2 with a glycosylphosphatidylinositol (GPI) anchor signal deletion, which is not expressed at the plasma membrane and is unable to entrap virions, activated NF-κB in concert with the Ebola virus proteins at least as effectively as wild-type BST2. Signaling by the GPI anchor mutant also depended on Y6 of BST2. Overall, our data show that activation of NF-κB by BST2 is independent of virion entrapment in the case of Ebola virus. Nonetheless, BST2 may induce or amplify proinflammatory signaling during Ebola virus infection, potentially contributing to the dysregulated cytokine response that is a hallmark of Ebola virus disease.IMPORTANCE Understanding how the host responds to viral infections informs the development of therapeutics and vaccines. We asked how proinflammatory signaling by the host protein BST2/tetherin, which is mediated by the transcription factor NF-κB, responds to Ebola virus proteins. Although the Ebola virus envelope glycoprotein (GP1,2) antagonizes the trapping of newly formed virions at the plasma membrane by BST2, we found that it does not inhibit BST2's ability to induce NF-κB activity. This distinguishes GP1,2 from the HIV-1 protein Vpu, the prototype BST2 antagonist, which inhibits both virion entrapment and the induction of NF-κB activity. Ebola virus GP1,2, the Ebola virus matrix protein VP40, and BST2 are at least additive with respect to the induction of NF-κB activity. The effects of these proteins converge on an intracellular signaling pathway that depends on a protein modification termed neddylation. Better mechanistic understanding of these phenomena could provide targets for therapies that modulate the inflammatory response during Ebola virus disease.


Assuntos
Antígenos CD/metabolismo , Ebolavirus/metabolismo , NF-kappa B/metabolismo , Proteínas do Envelope Viral/metabolismo , Proteínas da Matriz Viral/metabolismo , Vírion/metabolismo , Motivos de Aminoácidos , Antígenos CD/genética , Membrana Celular/genética , Membrana Celular/metabolismo , Membrana Celular/virologia , Ebolavirus/genética , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Células HEK293 , Humanos , NF-kappa B/genética , Domínios Proteicos , Multimerização Proteica , Proteínas do Envelope Viral/genética , Proteínas da Matriz Viral/genética , Vírion/genética
19.
J Virol ; 91(4)2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-27974555

RESUMO

Zaire ebolavirus (EBOV), Bundibugyo ebolavirus (BDBV), and Reston ebolavirus (RESTV) belong to the same genus but exhibit different virulence properties. VP24 protein, a structural protein present in all family members, blocks interferon (IFN) signaling and likely contributes to virulence. Inhibition of IFN signaling by EBOV VP24 (eVP24) involves its interaction with the NPI-1 subfamily of karyopherin alpha (KPNA) nuclear transporters. Here, we evaluated eVP24, BDBV VP24 (bVP24), and RESTV VP24 (rVP24) interactions with three NPI-1 subfamily KPNAs (KPNA1, KPNA5, and KPNA6). Using purified proteins, we demonstrated that each VP24 binds to each of the three NPI-1 KPNAs. bVP24, however, exhibited approximately 10-fold-lower KPNA binding affinity than either eVP24 or rVP24. Cell-based assays also indicate that bVP24 exhibits decreased KPNA interaction, decreased suppression of IFN induced gene expression, and a decreased half-life in transfected cells compared to eVP24 or rVP24. Amino acid sequence alignments between bVP24 and eVP24 also identified residues within and surrounding the previously defined eVP24-KPNA5 binding interface that decrease eVP24-KPNA affinity or bVP24-KPNA affinity. VP24 mutations that lead to reduced KPNA binding affinity also decrease IFN inhibition and shorten VP24 half-lives. These data identify novel functional differences in VP24-KPNA interaction and reveal a novel impact of the VP24-KPNA interaction on VP24 stability. IMPORTANCE: The interaction of Ebola virus (EBOV) VP24 protein with host karyopherin alpha (KPNA) proteins blocks type I interferon (IFN) signaling, which is a central component of the host innate immune response to viral infection. Here, we quantitatively compared the interactions of VP24 proteins from EBOV and two members of the Ebolavirus genus, Bundibugyo virus (BDBV) and Reston virus (RESTV). The data reveal lower binding affinity of the BDBV VP24 (bVP24) for KPNAs and demonstrate that the interaction with KPNA modulates inhibition of IFN signaling and VP24 stability. The effect of KPNA interaction on VP24 stability is a novel functional consequence of this virus-host interaction, and the differences identified between viral species may contribute to differences in pathogenesis.


Assuntos
Ebolavirus/fisiologia , Doença pelo Vírus Ebola/metabolismo , Doença pelo Vírus Ebola/virologia , Interferons/metabolismo , Proteínas Virais/metabolismo , alfa Carioferinas/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Doença pelo Vírus Ebola/genética , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Isoformas de Proteínas , Estabilidade Proteica , Proteínas Recombinantes de Fusão , Relação Estrutura-Atividade , Proteínas Virais/química , alfa Carioferinas/química , alfa Carioferinas/genética
20.
J Virol ; 91(8)2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28122983

RESUMO

Marburg (MARV) and Ebola (EBOV) viruses are zoonotic pathogens that cause severe hemorrhagic fever in humans. The natural reservoir of MARV is the Egyptian rousette bat (Rousettus aegyptiacus); that of EBOV is unknown but believed to be another bat species. The Egyptian rousette develops subclinical productive infection with MARV but is refractory to EBOV. Interaction of filoviruses with hosts is greatly affected by the viral interferon (IFN)-inhibiting domains (IID). Our study was aimed at characterization of innate immune responses to filoviruses and the role of filovirus IID in bat and human cells. The study demonstrated that EBOV and MARV replicate to similar levels in all tested cell lines, indicating that permissiveness for EBOV at cell and organism levels do not necessarily correlate. Filoviruses, particularly MARV, induced a potent innate immune response in rousette cells, which was generally stronger than that in human cells. Both EBOV VP35 and VP24 IID were found to suppress the innate immune response in rousette cells, but only VP35 IID appeared to promote virus replication. Along with IFN-α and IFN-ß, IFN-γ was demonstrated to control filovirus infection in bat cells but not in human cells, suggesting host species specificity of the antiviral effect. The antiviral effects of bat IFNs appeared not to correlate with induction of IFN-stimulated genes 54 and 56, which were detected in human cells ectopically expressing bat IFN-α and IFN-ß. As bat IFN-γ induced the type I IFN pathway, its antiviral effect is likely to be partially induced via cross talk.IMPORTANCE Bats serve as reservoirs for multiple emerging viruses, including filoviruses, henipaviruses, lyssaviruses, and zoonotic coronaviruses. Although there is no evidence for symptomatic disease caused by either Marburg or Ebola viruses in bats, spillover of these viruses into human populations causes deadly outbreaks. The reason for the lack of symptomatic disease in bats infected with filoviruses remains unknown. The outcome of a virus-host interaction depends on the ability of the host immune system to suppress viral replication and the ability of a virus to counteract the host defenses. Our study is a comparative analysis of the host innate immune response to either MARV or EBOV infection in bat and human cells and the role of viral interferon-inhibiting domains in the host innate immune responses. The data are useful for understanding the interactions of filoviruses with natural and accidental hosts and for identification of factors that influence filovirus evolution.


Assuntos
Ebolavirus/imunologia , Imunidade Inata , Marburgvirus/imunologia , Animais , Linhagem Celular , Quirópteros , Ebolavirus/fisiologia , Humanos , Tolerância Imunológica , Interferons/análise , Marburgvirus/fisiologia , Domínios Proteicos , Proteínas Virais/imunologia , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA