RESUMO
We performed a comparative study of the proliferative potential of human mesenchymal stromal cells (MSC) from three sources (tooth pulp, adipose tissue, and Wharton's jelly) in spheroid culture; human chondroblasts served as the positive control. Histological examination revealed signs of chondrogenic differentiation in all studied cell cultures and the differences in the volume and composition of the extracellular matrix. Spheroids formed by MSC from the tooth pulp and Wharton's jelly were characterized by low content of extracellular matrix and glycosaminoglycans. Spheroids from adipose tissue MSC contained maximum amount of the extracellular matrix and high content of glycosaminoglycans. Chondrocytes produced glycosaminoglycan-enriched matrix. Type II collagen was produced by chondrocytes (to a greater extent) and adipose tissue MSC (to a lesser extent). The results of our study demonstrate that MSC from the adipose tissue under conditions of spheroid culturing exhibited maximum chondrogenic potential.
Assuntos
Condrócitos/citologia , Condrogênese/fisiologia , Células-Tronco Mesenquimais/citologia , Técnicas de Cultura de Células , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Células Cultivadas , Condrócitos/fisiologia , Condrogênese/genética , Humanos , Imuno-Histoquímica , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/fisiologia , Geleia de WhartonRESUMO
We performed culturing of a cell-engineered construct of human cartilage tissue consisting of biopolymer microstructured collagen-containing hydrogel, human adipose tissue mesenchymal stromal cells, and induction chondrogenic culture medium in a specially designed flow-through bioreactor. On day 16 of the experiment, human adipose tissue mesenchymal stromal cells acquired flattened shape typical for chondroblasts, demonstrated high proliferative activity, and formed extracellular matrix. The observed histological changes in the cultured system attested to the beginning of the formation of a tissue-engineered construct of human cartilage tissue.