RESUMO
Yeast immobilization in beer fermentation has recently regained attention, due to the expansion of the craft beer market and the diversification of styles and flavors. The aim of this study was to evaluate the physiological differences between immobilized and free yeast cells with a focus on flavor-active compounds formation. Three strains of Saccharomyces spp. (SY025, SY067, SY001) were evaluated in both free and immobilized (using a cellulose-based support, referred as ImoYeast) forms during static batch fermentations of 12 °P malt extract. Immobilized cells showed higher glycerol (SY025, 40%; SY067, 53%; SY001, 19%) and biomass (SY025, 67%; SY067, 78%; SY001, 56%) yields than free cells. Conversely, free cells presented higher ethanol yield (SY025, 9%; SY067, 9%; SY001, 13%). Flavor-active compounds production exhibited significant alterations between immobilized and free cells systems, for all strains tested. Finally, a central composite design with varying initial biomass (X0) and substrate (S0) concentrations was conducted using strain SY025, which can be helpful to modulate the formation of one or more flavor-active compounds. In conclusion, yeast immobilization in the evaluated support resulted in flavor alterations that can be exploited to produce different beer styles.
Assuntos
Cerveja , Células Imobilizadas , Fermentação , Aromatizantes , Saccharomyces , Cerveja/microbiologia , Cerveja/análise , Saccharomyces/metabolismo , Aromatizantes/metabolismo , Células Imobilizadas/metabolismo , Biomassa , Etanol/metabolismo , Glicerol/metabolismo , Saccharomyces cerevisiae/metabolismoRESUMO
Saccharomyces cerevisiae (S. cerevisiae) is the most widely used yeast in biotechnology in the world because its well-known metabolism and physiology as well as its recognized ability to ferment sugars such as hexoses. However, it does not metabolize pentoses such as arabinose and xylose, which are present in lignocellulosic biomass. Lignocellulose is a widely available raw material, with xylose content of approximately 35% of total sugars. This xylose fraction could be used to obtain high added-value chemical products such as xylitol. One of these yeasts isolated from a Colombian locality, designated as 202-3, showed interesting properties. 202-3 was identified through different approaches as a strain of S. cerevisiae, with an interesting consumption of xylose metabolizing into xylitol, in addition with excellent ability as a hexose fermenter with high ethanol yields and shows resistance to inhibitors present in lignocellulosic hydrolysates. The xylose metabolization by the 202-3 strain and their kinetics parameters had not been previously reported for any other natural strain of S. cerevisiae. These results suggest the great potential of natural strains for obtaining high value-added chemical products using sugars available in lignocellulosic biomass. Supplementary Information: The online version contains supplementary material available at 10.1007/s12088-023-01054-z.
RESUMO
Ethanolic fermentation is frequently performed under conditions of low nitrogen. In Saccharomyces cerevisiae, nitrogen limitation induces macroautophagy, including the selective removal of mitochondria, also called mitophagy. Previous research showed that blocking mitophagy by deletion of the mitophagy-specific gene ATG32 increased the fermentation performance during the brewing of Ginjo sake. In this study, we tested if a similar strategy could enhance alcoholic fermentation in the context of fuel ethanol production from sugarcane in Brazilian biorefineries. Conditions that mimic the industrial fermentation process indeed induce Atg32-dependent mitophagy in cells of S. cerevisiae PE-2, a strain frequently used in the industry. However, after blocking mitophagy, no significant differences in CO2 production, final ethanol titers, or cell viability were observed after five rounds of ethanol fermentation, cell recycling, and acid treatment, which is commonly performed in sugarcane biorefineries. To test if S. cerevisiae's strain background influenced this outcome, cultivations were carried out in a synthetic medium with strains PE-2, Ethanol Red (industrial), and BY (laboratory) with and without a functional ATG32 gene and under oxic and oxygen restricted conditions. Despite the clear differences in sugar consumption, cell viability, and ethanol titers, among the three strains, we did not observe any significant improvement in fermentation performance related to the blocking of mitophagy. We concluded, with caution, that the results obtained with Ginjo sake yeast were an exception and cannot be extrapolated to other yeast strains and that more research is needed to ascertain the role of autophagic processes during fermentation. IMPORTANCE Bioethanol is the largest (per volume) ever biobased bulk chemical produced globally. The fermentation process is well established, and industries regularly attain nearly 85% of maximum theoretical yields. However, because of the volume of fuel produced, even a small improvement will have huge economic benefits. To this end, besides already implemented process improvements, various free energy conservation strategies have been successfully exploited at least in laboratory strains to increase ethanol yields and decrease byproduct formation. Cellular housekeeping processes have been an almost unexplored territory in strain improvement. It was previously reported that blocking mitophagy by deletion of the mitophagy receptor gene ATG32 in Saccharomyces cerevisiae led to a 2.1% increase in final ethanol titers during Japanese sake fermentation. We found in two commercially used bioethanol strains (PE-2 and Ethanol Red) that ATG32 deficiency does not lead to a significant improvement in cell viability or ethanol levels during fermentation with molasses or in a synthetic complete medium. More research is required to ascertain the role of autophagic processes during fermentation conditions.
Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Bebidas Alcoólicas , Proteínas Relacionadas à Autofagia , Etanol , Fermentação , Microbiologia Industrial , Mitofagia , Receptores Citoplasmáticos e Nucleares , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genéticaRESUMO
PURPOSE: Second generation (2G) ethanol is produced using lignocellulosic biomass. However, the pre-treatment processes generate a variety of molecules (furanic compounds, phenolic compounds, and organic acids) that act as inhibitors of microbial metabolism, and thus, reduce the efficiency of the fermentation step in this process. In this context, the present study aimed to investigate the effect of furanic compounds on the physiology of lactic acid bacteria (LAB) strains that are potential contaminants in ethanol production. METHODOLOGY: Homofermentative and heterofermentative strains of laboratory LAB, and isolated from first generation ethanol fermentation, were used. LAB strains were challenged to grow in the presence of furfural and 5-hydroxymethyl furfural (HMF). RESULTS: We determined that the effect of HMF and furfural on the growth rate of LAB is dependent on the metabolic type, and the growth kinetics in the presence of these compounds is enhanced for heterofermentative LAB, whereas they are inhibitory to homofermentative LAB. Sugar consumption and product formation were also enhanced in the presence of furanic compounds for heterofermentative LAB, who displayed effective depletion kinetics when compared to the homofermentative LAB. CONCLUSION: Homo- and heterofermentative LAB are affected differently by furanic compounds, in a way that the latter type is more resistant to the toxic effects of these inhibitors. This knowledge is important to understand the potential effects of bacterial contamination in 2G bioprocesses.
Assuntos
Furaldeído , Lactobacillus , Fermentação , Lactobacillus/metabolismo , Furaldeído/farmacologia , Furaldeído/metabolismo , Biomassa , Etanol/metabolismoRESUMO
The ethanol yield on sugar during alcoholic fermentation allows for diverse interpretation in academia and industry. There are several different ways to calculate this parameter, which is the most important one in this industrial bioprocess and the one that should be maximized, as reported by Pereira, Rodrigues, Sonego, Cruz and Badino (A new methodology to calculate the ethanol fermentation efficiency at bench and industrial scales. Ind Eng Chem Res 2018; 57: 16182-91). On the one hand, the various methods currently employed in industry provide dissimilar results, and recent evidence shows that yield has been consistently overestimated in Brazilian sugarcane biorefineries. On the other hand, in academia, researchers often lack information on all the intricate aspects involved in calculating the ethanol yield in industry. Here, we comment on these two aspects, using fuel ethanol production from sugarcane in Brazilian biorefineries as an example, and taking the work of Pereira, Rodrigues, Sonego, Cruz and Badino (A new methodology to calculate the ethanol fermentation efficiency at bench and industrial scales. Ind Eng Chem Res 2018; 57: 16182-91.) as a starting point. Our work is an attempt to demystify some common beliefs and to foster closer interaction between academic and industrial professionals from the fermentation sector. Pereira, Rodrigues, Sonego, Cruz and Badino (A new methodology to calculate the ethanol fermentation efficiency at bench and industrial scales. Ind Eng Chem Res 2018; 57: 16182-91).
Assuntos
Etanol , Saccharum , Brasil , Fermentação , Microbiologia IndustrialRESUMO
OBJECTIVES: Major lignocellulosic inhibitory compounds found in sugarcane-based industrial hydrolysate samples were tested in laboratory and industrial yeast strains, as well as in lactic acid bacteria, in order to verify their effects on important physiological parameters. RESULTS: Saccharomyces cereviaise SA-1, an industrial strain, stood out as compared to the remaining strains for virtually all inhibitors investigated. This strain presented the highest growth rate and the lowest lag-phase in the presence of acetic acid, levulinic acid, p-coumaric acid, ferulic acid, and HMF, when compared to the other strains. In sugarcane-based hydrolysate fermentations, both SA-1 and CEN.PK113-7D presented similar fermentation performances. Industrial isolates of contaminating lactic acid bacteria were evaluated in the presence of an inhibitory cocktail, containing a mixture of 76.6 mM acetic acid, 1.3 mM HMF, 7.1 mM furfural, and 1.9 mM p-coumaric acid. Whilst all yeast strains were unable to grow under such conditions, bacteria had an average inhibition of roughly 50% on their growth rates. CONCLUSIONS: Overall, industrial strain SA-1 might be a promising microbial chassis for second generation ethanol production and for future metabolic and evolutionary engineering strategies, and for strain robustness understanding.
Assuntos
Lactobacillales/crescimento & desenvolvimento , Lignina/farmacologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharum/química , Ácido Acético/metabolismo , Técnicas de Cultura Celular por Lotes , Etanol/metabolismo , Fermentação , Furaldeído/metabolismo , Hidrólise , Microbiologia Industrial , Lactobacillales/efeitos dos fármacos , Lignina/química , Extratos Vegetais/química , Saccharomyces cerevisiae/efeitos dos fármacosRESUMO
We sought to investigate how far the growth of Saccharomyces cerevisiae under full anaerobiosis is dependent on the widely used anaerobic growth factors (AGF) ergosterol and oleic acid. A continuous cultivation setup was employed and, even forcing ultrapure N2 gas through an O2 trap upstream of the bioreactor, neither cells from S. cerevisiae CEN.PK113-7D (a lab strain) nor from PE-2 (an industrial strain) washed out after an aerobic-to-anaerobic switch in the absence of AGF. S. cerevisiae PE-2 seemed to cope better than the laboratory strain with this extremely low O2 availability, since it presented higher biomass yield, lower specific rates of glucose consumption and CO2 formation, and higher survival at low pH. Lipid (fatty acid and sterol) composition dramatically altered when cells were grown anaerobically without AGF: saturated fatty acid, squalene and lanosterol contents increased, when compared to either cells grown aerobically or anaerobically with AGF. We concluded that these lipid alterations negatively affect cell viability during exposure to low pH or high ethanol titers.
Assuntos
Ergosterol/metabolismo , Ácidos Graxos Insaturados/deficiência , Ácidos Graxos/análise , Lipídeos/análise , Oxigênio/metabolismo , Saccharomyces cerevisiae/fisiologia , Anaerobiose , Biomassa , Sobrevivência Celular , Etanol/metabolismo , Ácidos Graxos/isolamento & purificação , Glucose/metabolismo , Concentração de Íons de Hidrogênio , Metabolismo dos Lipídeos , Lipídeos/isolamento & purificação , Saccharomyces cerevisiae/crescimento & desenvolvimentoRESUMO
Yeasts have a long-standing relationship with humankind that has widened in recent years to encompass production of diverse foods, beverages, fuels and medicines. Here, key advances in the field of yeast fermentation applied to alcohol production, which represents the predominant product of industrial biotechnology, will be presented. More specifically, we have selected industries focused in producing bioethanol, beer and wine. In these bioprocesses, yeasts from the genus Saccharomyces are still the main players, with Saccharomyces cerevisiae recognized as the preeminent industrial ethanologen. However, the growing demand for new products has opened the door to diverse yeasts, including non-Saccharomyces strains. Furthermore, the development of synthetic media that successfully simulate industrial fermentation medium will be discussed along with a general overview of yeast fermentation modeling.
Assuntos
Cerveja/análise , Etanol/metabolismo , Saccharomyces cerevisiae/metabolismo , Vinho/análise , Cerveja/microbiologia , Meios de Cultura/química , Meios de Cultura/metabolismo , Fermentação , Saccharomyces cerevisiae/genética , Vinho/microbiologiaRESUMO
The published online version contains mistake in Figure1. In the x-axis, instead of "1000", the number should be "100".
RESUMO
The budding yeast Saccharomyces cerevisiae plays an important role in biotechnological applications, ranging from fuel ethanol to recombinant protein production. It is also a model organism for studies on cell physiology and genetic regulation. Its ability to grow under anaerobic conditions is of interest in many industrial applications. Unlike industrial bioreactors with their low surface area relative to volume, ensuring a complete anaerobic atmosphere during microbial cultivations in the laboratory is rather difficult. Tiny amounts of O2 that enter the system can vastly influence product yields and microbial physiology. A common procedure in the laboratory is to sparge the culture vessel with ultrapure N2 gas; together with the use of butyl rubber stoppers and norprene tubing, O2 diffusion into the system can be strongly minimized. With insights from some studies conducted in our laboratory, we explore the question 'how anaerobic is anaerobiosis?'. We briefly discuss the role of O2 in non-respiratory pathways in S. cerevisiae and provide a systematic survey of the attempts made thus far to cultivate yeast under anaerobic conditions. We conclude that very few data exist on the physiology of S. cerevisiae under anaerobiosis in the absence of the anaerobic growth factors ergosterol and unsaturated fatty acids. Anaerobicity should be treated as a relative condition since complete anaerobiosis is hardly achievable in the laboratory. Ideally, researchers should provide all the details of their anaerobic set-up, to ensure reproducibility of results among different laboratories.
Assuntos
Oxigênio/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Anaerobiose , Reatores Biológicos/microbiologia , Etanol/análise , Etanol/metabolismo , Oxigênio/análise , Saccharomyces cerevisiae/genéticaRESUMO
The article "Industrial antifoam agents impair ethanol fermentation and induce stress responses in yeast cells" was originally published Online First without open access. After publication in volume 101, issue 22, page 8237-8248, the author decided to opt for Open Choice and to make the article an open access publication.
RESUMO
The Brazilian sugarcane industry constitutes one of the biggest and most efficient ethanol production processes in the world. Brazilian ethanol production utilizes a unique process, which includes cell recycling, acid wash, and non-aseptic conditions. Process characteristics, such as extensive CO2 generation, poor quality of raw materials, and frequent contaminations, all lead to excessive foam formation during fermentations, which is treated with antifoam agents (AFA). In this study, we have investigated the impact of industrial AFA treatments on the physiology and transcriptome of the industrial ethanol strain Saccharomyces cerevisiae CAT-1. The investigated AFA included industrially used AFA acquired from Brazilian ethanol plants and commercially available AFA commonly used in the fermentation literature. In batch fermentations, it was shown that industrial AFA compromised growth rates and glucose uptake rates, while commercial AFA had no effect in concentrations relevant for defoaming purposes. Industrial AFA were further tested in laboratory scale simulations of the Brazilian ethanol production process and proved to decrease cell viability compared to the control, and the effects were intensified with increasing AFA concentrations and exposure time. Transcriptome analysis showed that AFA treatments induced additional stress responses in yeast cells compared to the control, shown by an up-regulation of stress-specific genes and a down-regulation of lipid biosynthesis, especially ergosterol. By documenting the detrimental effects associated with chemical AFA, we highlight the importance of developing innocuous systems for foam control in industrial fermentation processes.
Assuntos
Antiespumantes/farmacologia , Etanol/metabolismo , Fermentação/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/fisiologia , Estresse Fisiológico , Brasil , Metabolismo dos Carboidratos , Regulação para Baixo , Perfilação da Expressão Gênica , Microbiologia Industrial , Saccharomyces cerevisiae/genética , Saccharum/metabolismo , Saccharum/microbiologia , Transcriptoma/efeitos dos fármacos , Regulação para CimaRESUMO
Bacterial contamination during industrial yeast fermentation has serious economic consequences for fuel ethanol producers. In addition to deviating carbon away from ethanol formation, bacterial cells and their metabolites often have a detrimental effect on yeast fermentative performance. The bacterial contaminants are commonly lactic acid bacteria (LAB), comprising both homo- and heterofermentative strains. We have studied the effects of these two different types of bacteria upon yeast fermentative performance, particularly in connection with sugarcane-based fuel ethanol fermentation process. Homofermentative Lactobacillus plantarum was found to be more detrimental to an industrial yeast strain (Saccharomyces cerevisiae CAT-1), when compared with heterofermentative Lactobacillus fermentum, in terms of reduced yeast viability and ethanol formation, presumably due to the higher titres of lactic acid in the growth medium. These effects were only noticed when bacteria and yeast were inoculated in equal cell numbers. However, when simulating industrial fuel ethanol conditions, as conducted in Brazil where high yeast cell densities and short fermentation time prevail, the heterofermentative strain was more deleterious than the homofermentative type, causing lower ethanol yield and out competing yeast cells during cell recycle. Yeast overproduction of glycerol was noticed only in the presence of the heterofermentative bacterium. Since the heterofermentative bacterium was shown to be more deleterious to yeast cells than the homofermentative strain, we believe our findings could stimulate the search for more strain-specific antimicrobial agents to treat bacterial contaminations during industrial ethanol fermentation.
Assuntos
Etanol/metabolismo , Lactobacillus/isolamento & purificação , Saccharomyces cerevisiae/metabolismo , Saccharum/microbiologia , Brasil , Fermentação , Microbiologia Industrial , Ácido Láctico/metabolismo , Lactobacillus/genética , Lactobacillus/crescimento & desenvolvimento , Lactobacillus/metabolismo , Saccharum/metabolismoRESUMO
Bioethanol is a sustainable energy alternative and can contribute to global greenhouse-gas emission reductions by over 60%. Its industrial production faces various bottlenecks, including sub-optimal efficiency resulting from bacteria. Broad-spectrum removal of these contaminants results in negligible gains, suggesting that the process is shaped by ecological interactions within the microbial community. Here, we survey the microbiome across all process steps at two biorefineries, over three timepoints in a production season. Leveraging shotgun metagenomics and cultivation-based approaches, we identify beneficial bacteria and find improved outcome when yeast-to-bacteria ratios increase during fermentation. We provide a microbial gene catalogue which reveals bacteria-specific pathways associated with performance. We also show that Limosilactobacillus fermentum overgrowth lowers production, with one strain reducing yield by ~5% in laboratory fermentations, potentially due to its metabolite profile. Temperature is found to be a major driver for strain-level dynamics. Improved microbial management strategies could unlock environmental and economic gains in this US $ 60 billion industry enabling its wider adoption.
Assuntos
Bactérias , Etanol , Fermentação , Etanol/metabolismo , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação , Microbiota/fisiologia , Biocombustíveis , Metagenômica , Microbiologia Industrial/métodos , TemperaturaRESUMO
Dekkera bruxellensis has been described as the major contaminant yeast of industrial ethanol production, although little is known about its physiology. The aim of this study was to investigate the growth of this yeast in diverse carbon sources and involved conducting shake-flask and glucose- or sucrose-limited chemostats experiments, and from the chemostat data, the stoichiometry of biomass formation during aerobic growth was established. As a result of the shake-flask experiments with hexoses or disaccharides, the specific growth rates were calculated, and a different behavior in rich and mineral medium was observed concerning to profile of acetate and ethanol production. In C-limited chemostats conditions, the metabolism of this yeast was completely respiratory, and the biomass yields reached values of 0.62 gDW gS(-1) . In addition, glucose pulses were applied to the glucose- or sucrose-limited chemostats. These results showed that D. bruxellensis has a short-term Crabtree effect. While the glucose pulse was at the sucrose-limited chemostat, sucrose accumulated at the reactor, indicating the presence of a glucose repression mechanism in D. bruxellensis.
Assuntos
Carbono/metabolismo , Dekkera/fisiologia , Etanol/metabolismo , Microbiologia Industrial , Oxigênio/metabolismo , Saccharomyces cerevisiae/química , Acetatos/metabolismo , Aerobiose , Biomassa , Respiração Celular , Meios de Cultura , Dekkera/crescimento & desenvolvimento , Dekkera/metabolismo , Fermentação , Proteínas Fúngicas/metabolismo , Glucose/metabolismo , Sacarose/metabolismo , beta-Frutofuranosidase/metabolismoRESUMO
The production of fuel ethanol from sugarcane-based raw materials in Brazil is a successful example of a large-scale bioprocess that delivers an advanced biofuel at competitive prices and low environmental impact. Two to three fed-batch fermentations per day, with acid treatment of the yeast cream between consecutive cycles, during 6-8 months of uninterrupted production in a nonaseptic environment are some of the features that make the Brazilian process quite peculiar. Along the past decades, some wild Saccharomyces cerevisiae strains were isolated, identified, characterized, and eventually, reintroduced into the process, enabling us to build up knowledge on these organisms. This information, combined with physiological studies in the laboratory and, more recently, genome sequencing data, has allowed us to start clarifying why and how these strains behave differently from the better known laboratory, wine, beer, and baker's strains. All these issues are covered in this minireview, which also presents a brief discussion on future directions in the field and on the perspectives of introducing genetically modified strains in this industrial process.
Assuntos
Etanol/metabolismo , Microbiologia Industrial , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharum/metabolismo , Cerveja , Biocombustíveis , Brasil , VinhoRESUMO
The thermal treatment the sugarcane juice undergoes during its processing alters the medium's chemical composition through the so-called Maillard reactions and its products, which can affect the alcohol-producing yeast's physiology in steps following the processing. This study aims to describe and characterize the reactivity of the primary amino acids present in sugarcane with sucrose, as well as demonstrate the physiological effects of the reaction's products on the yeast Saccharomyces cerevisiae. The main amino acids in sugarcane (glutamine, asparagine, and aspartic acid) were chosen to be reacted with sucrose under similar conditions to the industrial sugarcane processing (pH 5 and temperature 100-120 °C). The physiological effect of Maillard and caramelization reaction on the S. cerevisiae CEN.PK-122 and PE-2 strains were tested in microplate experiments using a modified mineral media containing both the reacted and unreacted amino acid-sucrose systems and four modified synthetic molasses media. The results have shown that the presence of any amino acids drastically increases product formation. Furthermore, among the amino acids, aspartic acid was the most reactive. Meanwhile, asparagine and glutamine had similar results. In S. cerevisiae physiology, aspartic acid had the most significant effect on culture growth by reducing the maximum specific growth rate and optical density. The increase in the Maillard product concentration for synthetic molasses also evidenced the inhibitory effect on yeast growth compared to media in the absence of these products. We conclude that this initial investigation clarifies the inhibitory effect of the Maillard products on yeast physiology.
Assuntos
Ácido Aspártico , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Ácido Aspártico/metabolismo , Glutamina/metabolismo , Asparagina/metabolismo , Fermentação , Sacarose/metabolismo , Aminoácidos/metabolismo , Produtos Finais de Glicação Avançada/metabolismoRESUMO
Simultaneous intracellular depolymerization of xylo-oligosaccharides (XOS) and acetate fermentation by engineered Saccharomyces cerevisiae offers significant potential for more cost-effective second-generation (2G) ethanol production. In the present work, the previously engineered S. cerevisiae strain, SR8A6S3, expressing enzymes for xylose assimilation along with an optimized route for acetate reduction, was used as the host for expressing two ß-xylosidases, GH43-2 and GH43-7, and a xylodextrin transporter, CDT-2, from Neurospora crassa, yielding the engineered SR8A6S3-CDT-2-GH34-2/7 strain. Both ß-xylosidases and the transporter were introduced by replacing two endogenous genes, GRE3 and SOR1, that encode aldose reductase and sorbitol (xylitol) dehydrogenase, respectively, and catalyse steps in xylitol production. The engineered strain, SR8A6S3-CDT-2-GH34-2/7 (sor1Δ gre3Δ), produced ethanol through simultaneous XOS, xylose, and acetate co-utilization. The mutant strain produced 60% more ethanol and 12% less xylitol than the control strain when a hemicellulosic hydrolysate was used as a mono- and oligosaccharide source. Similarly, the ethanol yield was 84% higher for the engineered strain using hydrolysed xylan, compared with the parental strain. Xylan, a common polysaccharide in lignocellulosic residues, enables recombinant strains to outcompete contaminants in fermentation tanks, as XOS transport and breakdown occur intracellularly. Furthermore, acetic acid is a ubiquitous toxic component in lignocellulosic hydrolysates, deriving from hemicellulose and lignin breakdown. Therefore, the consumption of XOS, xylose, and acetate expands the capabilities of S. cerevisiae for utilization of all of the carbohydrate in lignocellulose, potentially increasing the efficiency of 2G biofuel production.
Assuntos
Saccharomyces cerevisiae , Xilosidases , Saccharomyces cerevisiae/metabolismo , Xilanos/metabolismo , Xilose/metabolismo , Etanol/metabolismo , Engenharia Metabólica , Xilitol/metabolismo , Oligossacarídeos/metabolismo , Fermentação , D-Xilulose Redutase/genética , D-Xilulose Redutase/metabolismo , Xilosidases/metabolismo , Acetatos/metabolismoRESUMO
Fully defined laboratory media have the advantage of allowing for reproducibility and comparability of results among different laboratories, as well as being suitable for the investigation of how different individual components affect microbial or process performance. We developed a fully defined medium that mimics sugarcane molasses, a frequently used medium in different industrial processes where yeast is cultivated. The medium, named 2SMol, builds upon a previously published semi-defined formulation and is conveniently prepared from some stock solutions: C-source, organic N, inorganic N, organic acids, trace elements, vitamins, Mg + K, and Ca. We validated the 2SMol recipe in a scaled-down sugarcane biorefinery model, comparing the physiology of Saccharomyces cerevisiae in different actual molasses-based media. We demonstrate the flexibility of the medium by investigating the effect of nitrogen availability on the ethanol yield during fermentation. Here we present in detail the development of a fully defined synthetic molasses medium and the physiology of yeast strains in this medium compared to industrial molasses. This tailor-made medium was able to satisfactorily reproduce the physiology of S. cerevisiae in industrial molasses. Thus, we hope the 2SMol formulation will be valuable to researchers both in academia and industry to obtain new insights and developments in industrial yeast biotechnology.
Assuntos
Saccharum , Fermento Seco , Saccharomyces cerevisiae , Melaço , Reprodutibilidade dos Testes , Meios de Cultura , Grão ComestívelRESUMO
For the first time, the International Symposium on Fungal Stress was joined by the XIII International Fungal Biology Conference. The International Symposium on Fungal Stress (ISFUS), always held in Brazil, is now in its fourth edition, as an event of recognized quality in the international community of mycological research. The event held in São José dos Campos, SP, Brazil, in September 2022, featured 33 renowned speakers from 12 countries, including: Austria, Brazil, France, Germany, Ghana, Hungary, México, Pakistan, Spain, Slovenia, USA, and UK. In addition to the scientific contribution of the event in bringing together national and international researchers and their work in a strategic area, it helps maintain and strengthen international cooperation for scientific development in Brazil.