Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neurobiol Dis ; 184: 106219, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37422091

RESUMO

Accumulating evidence indicates that early adverse life experiences may be involved in the pathogenesis of Alzheimer's disease (AD). Prenatal stress (PS) can affect brain maturation and neuroimmune and metabolic interactions, leading to age-dependent cognitive deficits in offspring. However, a multi-faceted cause-and-effect impact of PS on the development of cognitive deficits in the process of physiological ageing and in the APPNL-F/NL-F mouse model of Alzheimer's disease has not yet been evaluated. We have identified age-dependent cognitive learning and memory deficits using male C57BL/6 J (wild type, WT) and the knock-in APPNL-F/NL-F (KI) aged 12, 15, and 18 months. An increase in the Aß42/Aß40 ratio and mouse ApoE levels in the hippocampus and frontal cortex preceded the onset of cognitive deficits in the KI mice. Moreover, dysfunction in insulin signaling, including increased IRS-1 serine phosphorylation in both brain areas and the tyrosine phosphorylation deficit in the frontal cortex, suggested age-dependent insulin/IGF-1 resistance. Resistance was reflected by disturbances in mTOR or ERK1/2 kinase phosphorylation and excessive pro-inflammatory (TNF-α, IL-6, and IL-23) status in the KI mice. Importantly, our study has provided insights into the higher vulnerability to PS-induced exacerbation of age-dependent cognitive deficits and biochemical dysfunction in KI mice than in WT animals. We anticipate our study will lead to future investigation of a multi-faceted cause-and-effect relationship between stress during neurodevelopment and the onset of AD pathology, distinguishing it from changes in the course of dementia during normal ageing.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Feminino , Gravidez , Masculino , Camundongos , Animais , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Insulina , Camundongos Transgênicos , Camundongos Endogâmicos C57BL , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/patologia , Modelos Animais de Doenças , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo
2.
Int J Mol Sci ; 24(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36674678

RESUMO

Since depression produces a long-term negative impact on quality of life, understanding the pathophysiological changes implicated in this disorder is urgent. There is growing evidence that demonstrates a key role for dysfunctional energy metabolism in driving the onset of depression; thus, bioenergetic alterations should be extensively studied. Brain metabolism is known to be a glucocorticoid-sensitive process, but the long-lasting consequences in adulthood following high levels of glucocorticoids at the early stages of life are unclear. We examined a possible association between brain energetic changes induced by synthetic glucocorticoid-dexamethasone treatment in the prenatal period and depressive-like behavior. The results show a reduction in the oxidative phosphorylation process, Krebs cycle impairment, and a weakening of the connection between the Krebs cycle and glycolysis in the frontal cortex of animals receiving dexamethasone, which leads to ATP reduction. These changes appear to be mainly due to decreased expression of pyruvate dehydrogenase, impairment of lactate transport to neurons, and pyruvate to the mitochondria. Acute stress in adulthood only slightly modified the observed alterations in the frontal cortex, while in the case of the hippocampus, prenatal exposure to dexamethasone made this structure more sensitive to future adverse factors.


Assuntos
Glucocorticoides , Efeitos Tardios da Exposição Pré-Natal , Animais , Feminino , Gravidez , Humanos , Glucocorticoides/metabolismo , Dexametasona/efeitos adversos , Dexametasona/metabolismo , Depressão/metabolismo , Qualidade de Vida , Encéfalo/metabolismo , Homeostase , Piruvatos/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo
3.
Int J Mol Sci ; 22(4)2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33557113

RESUMO

Multiple lines of evidence support the pathogenic role of maternal immune activation (MIA) in the occurrence of the schizophrenia-like disturbances in offspring. While in the brain the homeostatic role of neuron-microglia protein systems is well documented, the participation of the CX3CL1-CX3CR1 and CD200-CD200R dyads in the adverse impact of MIA often goes under-recognized. Therefore, in the present study, we examined the effect of MIA induced by polyinosinic:polycytidylic acid (Poly I:C) on the CX3CL1-CX3CR1 and CD200-CD200R axes, microglial trajectory (MhcII, Cd40, iNos, Il-1ß, Tnf-α, Il-6, Arg1, Igf-1, Tgf-ß and Il-4), and schizophrenia-like behaviour in adult male offspring of Sprague-Dawley rats. Additionally, according to the "two-hit" hypothesis of schizophrenia, we evaluated the influence of acute challenge with Poly I:C in adult prenatally MIA-exposed animals on the above parameters. In the present study, MIA evoked by Poly I:C injection in the late period of gestation led to the appearance of schizophrenia-like disturbances in adult offspring. Our results revealed the deficits manifested as a diminished number of aggressive interactions, presence of depressive-like episodes, and increase of exploratory activity, as well as a dichotomy in the sensorimotor gating in the prepulse inhibition (PPI) test expressed as two behavioural phenotypes (MIAPPI-low and MIAPPI-high). Furthermore, in the offspring rats subjected to a prenatal challenge (i.e., MIA) we noticed the lack of modulation of behavioural changes after the additional acute immune stimulus (Poly I:C) in adulthood. The important finding reported in this article is that MIA affects the expression and levels of the neuron-microglia proteins in the frontal cortex and hippocampus of adult offspring. We found that the changes in the CX3CL1-CX3CR1 axis could affect microglial trajectory, including decreased hippocampal mRNA level of MhcII and elevated cortical expression of Igf-1 in the MIAPPI-high animals and/or could cause the up-regulation of an inflammatory response (Il-6, Tnf-α, iNos) after the "second hit" in both examined brain regions and, at least in part, might differentiate behavioural disturbances in adult offspring. Consequently, the future effort to identify the biological background of these interactions in the Poly I:C-induced MIA model in Sprague-Dawley rats is desirable to unequivocally clarify this issue.


Assuntos
Imunomodulação/efeitos dos fármacos , Microglia/efeitos dos fármacos , Microglia/imunologia , Poli I-C/farmacologia , Esquizofrenia/etiologia , Animais , Comportamento Animal , Biomarcadores , Modelos Animais de Doenças , Suscetibilidade a Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/imunologia , Hipocampo/metabolismo , Masculino , Microglia/metabolismo , Microglia/patologia , Transtornos do Neurodesenvolvimento/etiologia , Transtornos do Neurodesenvolvimento/metabolismo , Fotoperíodo , RNA Mensageiro/genética , Ratos , Receptores CXCR3/metabolismo , Esquizofrenia/metabolismo , Comportamento Social
4.
J Neuroinflammation ; 17(1): 247, 2020 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-32829711

RESUMO

BACKGROUND: The bidirectional communication between neurons and microglia is fundamental for the homeostasis and biological function of the central nervous system. Maternal immune activation (MIA) is considered to be one of the factors affecting these interactions. Accordingly, MIA has been suggested to be involved in several neuropsychiatric diseases, including schizophrenia. The crucial regulatory systems for neuron-microglia crosstalk are the CX3CL1-CX3CR1 and CD200-CD200R axes. METHODS: We aimed to clarify the impact of MIA on CX3CL1-CX3CR1 and CD200-CD200R signalling pathways in the brains of male Wistar rats in early and adult life by employing two neurodevelopmental models of schizophrenia based on the prenatal challenge with lipopolysaccharide (LPS) and polyinosinic:polycytidylic acid (Poly I:C). We also examined the effect of MIA on the expression of microglial markers and the profile of cytokines released in the brains of young offspring, as well as the behaviour of adult animals. Moreover, we visualized the localization of ligand-receptor systems in the hippocampal regions (CA1, CA3 and DG) and the frontal cortex of young rats exposed to MIA. The differences between groups were analysed using Student's t test. RESULTS: We observed that MIA altered developmental trajectories in neuron-microglia communication in the brains of young offspring, as evidenced by the disruption of CX3CL1-CX3CR1 and/or CD200-CD200R axes. Our data demonstrated the presence of abnormalities after LPS-induced MIA in levels of Cd40, Il-1ß, Tnf-α, Arg1, Tgf-ß and Il-10, as well as IBA1, IL-1ß and IL-4, while after Poly I:C-generated MIA in levels of Cd40, iNos, Il-6, Tgf-ß, Il-10, and IBA1, IL-1ß, TNF-α, IL-6, TGF-ß and IL-4 early in the life of male animals. In adult male rats that experienced prenatal exposure to MIA, we observed behavioural changes resembling a schizophrenia-like phenotype. CONCLUSIONS: Our study provides evidence that altered CX3CL1-CX3CR1 and/or CD200-CD200R pathways, emerging after prenatal immune challenge with LPS and Poly I:C, might be involved in the aetiology of schizophrenia.


Assuntos
Encéfalo/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Poli I-C/farmacologia , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Antígenos CD/metabolismo , Encéfalo/metabolismo , Receptor 1 de Quimiocina CX3C/metabolismo , Quimiocina CX3CL1/metabolismo , Feminino , Masculino , Gravidez , Ratos , Ratos Wistar , Receptores Imunológicos/metabolismo , Esquizofrenia/metabolismo
5.
Int J Mol Sci ; 19(7)2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29976873

RESUMO

An increasing body of evidence postulates that microglia are the main mediators of inflammation-related disorders, including depression. Since activated microglia produce a wide range of pro- and anti-inflammatory factors, the modulation of M1/M2 microglial polarization by antidepressants may be crucial in the treatment of depression. The current paper aimed to investigate the impact of tianeptine on the microglia's viability/death parameters, and on M1/M2 microglial activation in response to lipopolysaccharide (LPS) stimulation. Furthermore, the molecular mechanisms via which tianeptine affected the LPS-evoked changes were investigated. The results revealed that tianeptine had partially protective effects on the changes in microglia viability/death evoked by LPS. Tianeptine attenuated microglia activation by decreasing the expression of cluster of differentiation 40 (CD40), and major histocompatibility complex class II (MHC II) markers, as well as the release of pro-inflammatory factors: interleukin (IL)-1ß, IL-18, IL-6, tumor necrosis factor alpha (TNF-α), and chemokine CC motif ligand 2 (CCL2), and the production of nitric oxide and reactive oxygen species. In contrast, we did not observe an impact of tianeptine on M2 microglia measured by IL-4, IL-10, TGF-ß, and insulin-like growth factor 1 (IGF-1) expression. Moreover, we demonstrated an inhibitory effect of tianeptine on the LPS-induced activation of the nucleotide-binding oligomerization domain-like (NOD-like) receptor pyrin-containing 3 inflammasome (NLRP3) inflammasome subunits, NLRP3 and caspase-1, as well as the ability of tianeptine to reduce Toll-like receptor 4 (TLR4) levels, as well as the phosphorylation of extracellular signal-related kinases 1 and 2 (ERK1/2) and of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Collectively, we demonstrated that tianeptine has protective properties and inhibits M1 polarization, thus attenuating the production of inflammatory mediators. Moreover, we found that M1 microglia suppression may be related to the NLRP3 inflammasome and TLR4 signaling. These findings suggest that a better understanding of the multifaceted mechanisms of tianeptine action on microglia may increase the effectiveness of therapy, where inflammation is a central hallmark.


Assuntos
Antidepressivos Tricíclicos/farmacologia , Inflamassomos/metabolismo , Microglia/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Tiazepinas/farmacologia , Animais , Morte Celular/efeitos dos fármacos , Polaridade Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Lipopolissacarídeos/farmacologia , Óxido Nítrico/metabolismo , Cultura Primária de Células , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Receptor 4 Toll-Like/metabolismo
6.
Mol Cell Neurosci ; 71: 114-24, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26763728

RESUMO

Currently, the low efficacy of antinociceptive drugs for the treatment of neuropathic pain is a major therapeutic problem. Here, we show the potential role of interleukin (IL)-18 signaling in this phenomenon. IL-18 is an important molecule that performs various crucial functions, including the alteration of nociceptive transmission in response to neuropathic pain. We have studied the changes in the mRNA and protein levels (qRT-PCR and Western blot analysis, respectively) of IL-18, IL-18-binding protein (IL-18BP) and the IL-18 receptor (IL-18R) over time in rats following chronic constriction injury (CCI) of the sciatic nerve. Our study demonstrated that the spinal levels of IL-18BP were slightly downregulated at days 7 and 14 in the rats subjected to CCI. In contrast, the IL-18 and IL-18R mRNA expression and protein levels were elevated in the ipsilateral spinal cord on days 2, 7 and 14. Moreover, in rats exposed to a single intrathecal administration of IL-18BP (50 and 100 ng) 7 or 14 days following CCI, symptoms of neuropathic pain were attenuated, and the analgesia pursuant to morphine and buprenorphine (0.5 and 2.5 µg) was enhanced. In summary, the restoration of the analgesic activity of morphine and buprenorphine via the blockade of IL-18 signaling suggests that increased IL-18 pathway may account for the decreased analgesic efficacy of opioids for neuropathic pain.


Assuntos
Analgésicos Opioides/farmacologia , Buprenorfina/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Interleucina-18/metabolismo , Morfina/farmacologia , Neuralgia/metabolismo , Analgésicos Opioides/administração & dosagem , Analgésicos Opioides/uso terapêutico , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Buprenorfina/administração & dosagem , Buprenorfina/uso terapêutico , Células Cultivadas , Sinergismo Farmacológico , Peptídeos e Proteínas de Sinalização Intercelular/administração & dosagem , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Interleucina-18/genética , Masculino , Morfina/administração & dosagem , Morfina/uso terapêutico , Neuralgia/tratamento farmacológico , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Ratos Wistar , Receptores de Interleucina-18/genética , Receptores de Interleucina-18/metabolismo , Medula Espinal/citologia , Medula Espinal/metabolismo
7.
Int J Mol Sci ; 18(2)2017 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-28218653

RESUMO

The role of different genotypes of apolipoprotein E (apoE) in the etiology of Alzheimer's disease is widely recognized. It has been shown that altered functioning of apoE may promote 4-hydroxynonenal modification of mitochondrial proteins, which may result in mitochondrial dysfunction, aggravation of oxidative stress, and neurodegeneration. Mitochondrial aldehyde dehydrogenase (ALDH2) is an enzyme considered to perform protective function in mitochondria by the detoxification of the end products of lipid peroxidation, such as 4-hydroxynonenal and other reactive aldehydes. The goal of our study was to apply a differential proteomics approach in concert with molecular and morphological techniques to elucidate the changes in the frontal cortex and hippocampus of apolipoprotein E knockout (apoE-/-) mice upon treatment with Alda-1-a small molecular weight activator of ALDH2. Despite the lack of significant morphological changes in the brain of apoE-/- mice as compared to age-matched wild type animals, the proteomic and molecular approach revealed many changes in the expression of genes and proteins, indicating the impairment of energy metabolism, neuroplasticity, and neurogenesis in brains of apoE-/- mice. Importantly, prolonged treatment of apoE-/- mice with Alda-1 led to the beneficial changes in the expression of genes and proteins related to neuroplasticity and mitochondrial function. The pattern of alterations implies mitoprotective action of Alda-1, however, the accurate functional consequences of the revealed changes require further research.


Assuntos
Aldeído-Desidrogenase Mitocondrial/metabolismo , Apolipoproteínas E/deficiência , Benzamidas/farmacologia , Benzodioxóis/farmacologia , Lobo Frontal/metabolismo , Hipocampo/metabolismo , Proteômica/métodos , Aldeídos/sangue , Animais , Apolipoproteínas E/metabolismo , Apoptose/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Imuno-Histoquímica , Inflamação/patologia , Marcação por Isótopo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Biogênese de Organelas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
8.
J Neurochem ; 136(5): 958-70, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26640965

RESUMO

Accumulating evidence suggests that activation of microglia plays a key role in the pathogenesis of depression. Activated microglia produce a wide range of factors whose prolonged or excessive release may lead to brain disorders. Thus, the inhibition of microglial cells may be beneficial in the treatment of depressive diseases. Tianeptine is an atypical antidepressant drug with proven clinical efficacy, but its mechanism of action remains still not fully understood. In the present study, using microglial cultures we investigated whether tianeptine modifies microglial activation after lipopolysaccharide (LPS) stimulation and which intracellular pathways are involved in the activity of this antidepressant. Our study shows that tianeptine attenuated the LPS-evoked inflammatory activation of microglia by decreasing the expression of proinflammatory cytokines such as IL-1ß, IL-18, IL-6 and tumor necrosis factor α (TNF-α), the release of nitric oxide (NO) and reactive oxygen species (ROS) as well as the expression of inducible nitric oxide synthase. Analyses of signaling pathways demonstrate that tianeptine led to the suppression of LPS-induced TLR4 expression and ERK1/2 phosphorylation. Furthermore, our study reveals the inhibitory impact of tianeptine on caspase-3-induced PKCδ degradation and consequently on the activation of NF-κB factor in microglial cells. Taken together, present results show anti-inflammatory properties of tianeptine in microglial cultures stimulated by LPS. This study provides evidence that the inhibition of microglial activation may underlie the therapeutic activity of tianeptine. Our findings show the anti-inflammatory effect of tianeptine (TIA) in lipopolisaccharide (LPS)-stimulated microglial cells. The beneficial tianeptine action is mediated through the inhibition of Toll-like receptor 4 (TLR4) expression as well as the TLR4-related pathways: extracellular signal-regulated kinase 1/2 (ERK1/2), caspase-3-dependent protein kinase δ (PKCδ) cleavage and the expression of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). These findings may provide a new therapeutic strategy for treatment of disorders based on neuroinflammation, including depression.


Assuntos
Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico , Lipopolissacarídeos/farmacologia , Microglia/efeitos dos fármacos , Tiazepinas/farmacologia , Receptor 4 Toll-Like/efeitos dos fármacos , Animais , Citocinas/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Ratos Sprague-Dawley , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
9.
Brain Behav Immun ; 51: 144-153, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26254233

RESUMO

The etiology of depression remains still unclear. Recently, it has been proposed, that mitochondrial dysfunction may be associated with development of mood disorders, such as depression, bipolar disorder and anxiety disorders. Mitochondrial aldehyde dehydrogenase (ALDH2), an enzyme responsible for the detoxification of reactive aldehydes, is considered to exert protective function in mitochondria. We investigated the influence of Alda-1, a small-molecule activator of ALDH2, on depressive- and anxiety-like behaviors in an animal model of depression - the prenatally stressed rats - using behavioral, molecular and proteomic methods. Prolonged Alda-1 administration significantly increased the climbing time, tended to reduce the immobility time and increased the swimming time of the prenatally stressed rats in the forced swim test. Moreover, treatment of prenatally stressed rats with Alda-1 significantly increased number of entries into the open arms of the maze and the time spent therein, as assessed by elevated plus-maze test. Such actions were associated with reduction of plasma 4-HNE-protein content, decrease of TNF-α mRNA and increase of PGC-1α (regulator of mitochondrial biogenesis) mRNA level in the frontal cortex and hippocampus of the prenatally stressed rats as well as with normalization of peripheral immune parameters and significant changes in expression of 6 and 4 proteins related to mitochondrial functions in the frontal cortex and hippocampus, respectively. Collectively, ALDH2 activation by Alda-1 led to a significant attenuation of depressive- and anxiety-like behaviors in the prenatally stressed rats. The pattern of changes suggested mitoprotective effect of Alda-1, however the exact functional consequences of the revealed alterations require further investigation.


Assuntos
Aldeído-Desidrogenase Mitocondrial/metabolismo , Ansiedade/enzimologia , Transtorno Depressivo/enzimologia , Mitocôndrias/enzimologia , Efeitos Tardios da Exposição Pré-Natal/enzimologia , Efeitos Tardios da Exposição Pré-Natal/psicologia , Estresse Psicológico/enzimologia , Estresse Psicológico/psicologia , Animais , Apoptose/efeitos dos fármacos , Benzamidas/administração & dosagem , Benzodioxóis/administração & dosagem , Proliferação de Células/efeitos dos fármacos , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Lobo Frontal/efeitos dos fármacos , Lobo Frontal/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Linfócitos/efeitos dos fármacos , Masculino , Atividade Motora/efeitos dos fármacos , Gravidez , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley
10.
Neural Plast ; 2016: 7258201, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27239349

RESUMO

The potential contribution of inflammation to the development of neuropsychiatric diseases has recently received substantial attention. In the brain, the main immune cells are the microglia. As they are the main source of inflammatory factors, it is plausible that the regulation of their activation may be a potential therapeutic target. Fractalkine (CX3CL1) and its receptor CX3CR1 play a crucial role in the control of the biological activity of the microglia. In the present study, using microglial cultures we investigated whether fractalkine is able to reverse changes in microglia caused by a prenatal stress procedure. Our study found that the microglia do not express fractalkine. Prenatal stress decreases the expression of the fractalkine receptor, which in turn is enhanced by the administration of exogenous fractalkine. Moreover, treatment with fractalkine diminishes the prenatal stress-induced overproduction of proinflammatory factors such as IL-1ß, IL-18, IL-6, TNF-α, CCL2, or NO in the microglial cells derived from prenatally stressed newborns. In conclusion, the present results revealed that the pathological activation of microglia in prenatally stressed newborns may be attenuated by fractalkine administration. Therefore, understanding of the role of the CX3CL1-CX3CR1 system may help to elucidate the mechanisms underlying the neuron-microglia interaction and its role in pathological conditions in the brain.


Assuntos
Quimiocina CX3CL1/metabolismo , Microglia/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Receptores de Citocinas/metabolismo , Receptores de HIV/metabolismo , Estresse Fisiológico/fisiologia , Estresse Psicológico/metabolismo , Animais , Receptor 1 de Quimiocina CX3C , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Quimiocina CX3CL1/farmacologia , Feminino , Interleucinas/metabolismo , Microglia/efeitos dos fármacos , Óxido Nítrico/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/genética , Ratos Sprague-Dawley , Receptores de Citocinas/genética , Receptores de HIV/genética , Estresse Psicológico/genética , Fator de Necrose Tumoral alfa/metabolismo
11.
Int J Neuropsychopharmacol ; 17(11): 1763-75, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24946016

RESUMO

The effect of stress on the mRNA and protein level of the 5-HT1A receptor and two of its key transcriptional modulators, NUDR and Freud-1, was examined in the prefrontal cortex (PFC) and hippocampus (Hp) using rodent models: olfactory bulbectomy (OB) and prenatal stress (PS) in male and female rats; chronic mild stress in male rats (CMS) and pregnancy stress. In PFC, CMS induced the most widespread changes, with significant reduction in both mRNA and protein levels of NUDR, 5-HT1A receptor and in Freud-1 mRNA; while in Hp 5-HT1A receptor and Freud-1 protein levels were also decreased. In male, but not female OB rats PFC Freud-1 and 5-HT1A receptor protein levels were reduced, while in Hp 5-HT1A receptor, Freud-1 and NUDR mRNA's but not protein were reduced. In PS rats PFC 5-HT1A receptor protein was reduced more in females than males; while in Hp Freud-1 protein was increased in females. In pregnancy stress, PFC NUDR, Freud-1 and 5-HT1A protein receptor levels were reduced, and in HP 5-HT1A receptor protein levels were also reduced; in HP only NUDR and Freud-1 mRNA levels were reduced. Overall, CMS and stress during pregnancy produced the most salient changes in 5-HT1A receptor and transcription factor expression, suggesting a primary role for altered transcription factor expression in chronic regulation of 5-HT1A receptor expression. By contrast, OB (in males) and PS (in females) produced gender-specific reductions in PFC 5-HT1A receptor protein levels, suggesting a role for post-transcriptional regulation. These and previous data suggest that chronic stress might be a key regulator of NUDR/Freud-1 gene expression.


Assuntos
Encéfalo/metabolismo , Regulação da Expressão Gênica/fisiologia , Proteínas Nucleares/metabolismo , Receptor 5-HT1A de Serotonina/metabolismo , Proteínas Repressoras/metabolismo , Estresse Psicológico/patologia , Animais , Modelos Animais de Doenças , Feminino , Masculino , Proteínas Nucleares/genética , Bulbo Olfatório/cirurgia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , RNA Mensageiro/metabolismo , Ratos , Receptor 5-HT1A de Serotonina/genética , Proteínas Repressoras/genética , Fatores Sexuais , Estresse Psicológico/etiologia , Fatores de Transcrição
12.
Neuroendocrinology ; 100(2-3): 178-90, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25300940

RESUMO

INTRODUCTION: Recent data indicate that there is a link between depression and diabetes and that excess glucocorticoids may play an underlying role in the pathogenesis of both of these diseases. The aim of the present study was to determine whether there are any alterations in glucose, glycogen, glucose transporters, insulin, insulin receptors or corticosterone concentrations in the hippocampus and frontal cortex in a prenatal stress rat model of depression. METHODS: Male rats whose mothers had been subjected to stress and control animals were subjected to the Porsolt test to verify the experimental model. Next, some of the rats were subjected to acute stress and/or were administered glucose. Glucose, glycogen, corticosterone, insulin, insulin receptor, phospho-insulin receptor and glucose transporter (GLUT1, GLUT3 and GLUT4) concentrations were assayed. RESULTS: Prenatally stressed rats exhibited glucose and glycogen concentrations in both investigated brain structures that exceeded those of the control animals. Prenatal stress also increased the levels of glucose transporters - GLUT1 in both tissues and GLUT4 in the frontal cortex. The changes in the prenatally stressed rats were more prominent in the animals that were subjected to stress or glucose loading in adulthood. CONCLUSION: The increase in carbohydrate brain concentrations evoked by prenatal stress may result from changes in the amounts of glucose transporters, especially GLUT1. Moreover, the obtained results support the hypothesis that stress during the perinatal period permanently increases the sensitivity of brain tissue to factors that act in adulthood. © 2014 S. Karger AG, Basel.


Assuntos
Encéfalo/metabolismo , Transtorno Depressivo/metabolismo , Glucose/metabolismo , Glicogênio/metabolismo , Estresse Psicológico/metabolismo , Animais , Corticosterona/metabolismo , Modelos Animais de Doenças , Feminino , Glucose/administração & dosagem , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 3/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Insulina/metabolismo , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Distribuição Aleatória , Ratos Sprague-Dawley , Receptor de Insulina/metabolismo
13.
Cells ; 13(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38474339

RESUMO

The dental pulp is the inner part of the tooth responsible for properly functioning during its lifespan. Apart from the very big biological heterogeneity of dental cells, tooth microenvironments differ a lot in the context of mechanical properties-ranging from 5.5 kPa for dental pulp to around 100 GPa for dentin and enamel. This physical heterogeneity and complexity plays a key role in tooth physiology and in turn, is a great target for a variety of therapeutic approaches. First of all, physical mechanisms are crucial for the pain propagation process from the tooth surface to the nerves inside the dental pulp. On the other hand, the modulation of the physical environment affects the functioning of dental pulp cells and thus is important for regenerative medicine. In the present review, we describe the physiological significance of biomechanical processes in the physiology and pathology of dental pulp. Moreover, we couple those phenomena with recent advances in the fields of bioengineering and pharmacology aiming to control the functioning of dental pulp cells, reduce pain, and enhance the differentiation of dental cells into desired lineages. The reviewed literature shows great progress in the topic of bioengineering of dental pulp-although mainly in vitro. Apart from a few positions, it leaves a gap for necessary filling with studies providing the mechanisms of the mechanical control of dental pulp functioning in vivo.


Assuntos
Polpa Dentária , Dente , Medicina Regenerativa , Diferenciação Celular/fisiologia , Biofísica
14.
Pharmacol Rep ; 76(1): 51-71, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38194217

RESUMO

BACKGROUND: Maternal elevated glucocorticoid levels during pregnancy can affect the developing fetus, permanently altering the structure and function of its brain throughout life. Excessive action of these hormones is known to contribute to psychiatric disorders, including depression. MATERIALS: The study was performed in a rat model of depression based on prenatal administration of dexamethasone (DEX) in late pregnancy (0.1 mg/kg, days 14-21). We evaluated the effects of prenatal DEX treatment on the cognition and bioenergetic signaling pathways in the brain of adult male rats, in the frontal cortex and hippocampus, and in response to stress in adulthood, using behavioral and biochemical test batteries. RESULTS: We revealed cognitive deficits in rats prenatally treated with DEX. At the molecular level, a decrease in the orexin A and orexin B levels and downregulation of the AMPK-SIRT1-PGC1α transduction pathway in the frontal cortex of these animals were observed. In the hippocampus, a decreased expression of orexin B was found and changes in the MR/GR ratio were demonstrated. Furthermore, an increase in HDAC5 level triggered by the prenatal DEX treatment in both brain structures and a decrease in MeCP2 level in the hippocampus were reported. CONCLUSIONS: Our study demonstrated that prenatal DEX treatment is associated with cognitive dysfunction and alterations in various proteins leading to metabolic changes in the frontal cortex, while in the hippocampus adaptation mechanisms were activated. The presented results imply that different pathophysiological metabolic processes may be involved in depression development, which may be useful in the search for novel therapies.


Assuntos
Transtorno Depressivo , Efeitos Tardios da Exposição Pré-Natal , Humanos , Feminino , Ratos , Masculino , Animais , Gravidez , Orexinas/metabolismo , Dexametasona/farmacologia , Depressão/metabolismo , Encéfalo/metabolismo , Glucocorticoides/metabolismo , Hipocampo , Modelos Animais , Transtorno Depressivo/tratamento farmacológico , Transtorno Depressivo/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Receptores de Glucocorticoides/metabolismo
15.
Life (Basel) ; 14(6)2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38929704

RESUMO

Microglia are the primary innate immune cells of the central nervous system and extensively contribute to brain homeostasis. Dysfunctional or excessive activity of microglia may be associated with several neuropsychiatric disorders, including schizophrenia. Therefore, we examined whether aripiprazole and risperidone could influence the expression of the Cd200-Cd200r and Cx3cl1-Cx3cr1 axes, which are crucial for the regulation of microglial activity and interactions of these cells with neurons. Additionally, we evaluated the impact of these drugs on microglial pro- and anti-inflammatory markers (Cd40, Il-1ß, Il-6, Cebpb, Cd206, Arg1, Il-10 and Tgf-ß) and cytokine release (IL-6, IL-10). The research was executed in organotypic cortical cultures (OCCs) prepared from the offspring of control rats (control OCCs) or those exposed to maternal immune activation (MIA OCCs), which allows for the exploration of schizophrenia-like disturbances in animals. All experiments were performed under basal conditions and after additional stimulation with lipopolysaccharide (LPS), following the "two-hit" hypothesis of schizophrenia. We found that MIA diminished the mRNA level of Cd200r and affected the OCCs' response to additional LPS exposure in terms of this parameter. LPS downregulated the Cx3cr1 expression and profoundly changed the mRNA levels of pro- and anti-inflammatory microglial markers in both types of OCCs. Risperidone increased Cd200 expression in MIA OCCs, while aripiprazole treatment elevated the gene levels of the Cx3cl1-Cx3cr1 dyad in control OCCs. The antipsychotics limited the LPS-generated increase in the expression of proinflammatory factors (Il-1ß and Il-6) and enhanced the mRNA levels of anti-inflammatory components (Cd206 and Tgf-ß) of microglial polarization, mostly in the absence of the MIA procedure. Finally, we observed a more pronounced modulating impact of aripiprazole on the expression of pro- and anti-inflammatory cytokines when compared to risperidone in MIA OCCs. In conclusion, our data suggest that MIA might influence microglial activation and crosstalk of microglial cells with neurons, whereas aripiprazole and risperidone could beneficially affect these changes in OCCs.

16.
Brain Behav Immun ; 31: 96-104, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23313516

RESUMO

Chronic activation of immune-inflammatory and oxidative and nitrosative stress (O&NS) pathways plays an important role in the pathophysiology of clinical depression. Increased IgA responses directed against LPS of gram-negative bacteria, indicating increased bacterial translocation, may be one of the drivers underpinning these pathways. There is a strong association between signs of bacterial translocation and chronicity of depression and O&NS, but not pro-inflammatory cytokines. The aims of the present study were to: (1) develop a new neurobehavioral model of (chronic) depression (anhedonic behavior) that may reflect chronic LPS stimulation and is associated with increased oxidative stress, and (2) to delineate the effects of fluoxetine on this new depression model. We established that in female mice repeated LPS injections once daily for 5 days (from 750 µg/kg to a maximal dose 1250 µg/kg; increasing doses for the first three days which were then gradually decreased on day 4 and 5) at a one-month interval and this repeated for 4 consecutive months induced chronic anhedonia (estimated by the preference to drink a 1% sucrose) lasting for at least 7 weeks. Chronic LPS administration significantly decreased thymus weight, proliferative activity of splenocytes, production of interferon (IFN)γ and interleukin-(IL)10, and increased superoxide and corticosterone production. Treatment with fluoxetine for 3 weeks abolished the neurobehavioral effects of LPS. The antidepressant effect of fluoxetine was accompanied by increased production of IL-10 and reduced superoxide and corticosterone production. Our results suggest that repeated intermittent LPS injections to female mice may be a useful model of chronic depression and in particular for the depressogenic effects of long standing activation of the toll-like receptor IV complex.


Assuntos
Antidepressivos/farmacologia , Comportamento Animal/efeitos dos fármacos , Depressão/induzido quimicamente , Transtorno Depressivo/induzido quimicamente , Modelos Animais de Doenças , Fluoxetina/farmacologia , Lipopolissacarídeos , Animais , Peso Corporal/efeitos dos fármacos , Comportamento de Escolha/efeitos dos fármacos , Depressão/fisiopatologia , Transtorno Depressivo/fisiopatologia , Ingestão de Alimentos/efeitos dos fármacos , Feminino , Camundongos , Sacarose/farmacologia , Timo/efeitos dos fármacos
17.
Curr Neuropharmacol ; 21(10): 2030-2035, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36173070

RESUMO

In recent years, increasing attention has been paid to the role of physical factors in biological processes. This direction was ultimately confirmed by the recent 2021 Nobel Prize in medicine and physiology awarded in ½ to Ardem Patapoutian for his discovery of Piezo1 and Piezo2 mechanosensitive receptors. Among them, Piezo2 is responsible for sensing touch, while Piezo1 is engaged in a variety of mechanotransduction events. Piezo1 is expressed in various central nervous system cells, while its expression may be affected in the course of various pathological conditions. Recently, thanks to the development of Piezo1 modulators (i.e. Yoda1, Jedi1/2 and Dooku2), it is possible to study the role of Piezo1 in the pathogenesis of various neurological diseases including ischemia, glioma, and age-related dementias. The results obtained in this field suggest that proper modulation of Piezo1 receptor might be beneficial in the course of various neurological diseases.


Assuntos
Canais Iônicos , Mecanotransdução Celular , Doenças do Sistema Nervoso , Humanos , Canais Iônicos/metabolismo , Doenças do Sistema Nervoso/terapia
18.
Cells ; 12(4)2023 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-36831327

RESUMO

The vitamin D receptor (VDR) belongs to the nuclear receptor superfamily of transcription factors. The VDR is expressed in diverse brain regions and has been implicated in the neuroprotective, antiaging, prosurvival, and anti-inflammatory action of vitamin D. Accordingly, a relationship between vitamin D insufficiency and susceptibility to neurodegenerative diseases has been suggested. However, due to the multitargeted mechanisms of vitamin D and its often overlapping genomic and nongenomic effects, the role of the VDR in brain pathologies remains obscure. In this narrative review, we present progress in deciphering the molecular mechanism of nuclear VDR-mediated vitamin D effects on prosurvival and anti-inflammatory signaling pathway activity within the central nervous system. In line with the concept of the neurovascular unit in pathomechanisms of neurodegenerative diseases, a discussion of the role of the VDR in regulating the immune and vascular brain systems is also included. Next, we discuss the results of preclinical and clinical studies evaluating the significance of vitamin D status and the efficacy of vitamin D supplementation in the treatment of Parkinson's and Alzheimer's diseases, emphasizing the possible role of the VDR in these phenomena. Finally, the associations of some VDR polymorphisms with higher risks and severity of these neurodegenerative disorders are briefly summarized.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Receptores de Calcitriol/metabolismo , Doença de Parkinson/genética , Vitamina D/metabolismo , Vitaminas
19.
Cells ; 12(11)2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37296586

RESUMO

Ischaemic stroke is characterized by a sudden loss of blood circulation to an area of the brain, resulting in a corresponding loss of neurologic function. As a result of this process, neurons in the ischaemic core are deprived of oxygen and trophic substances and are consequently destroyed. Tissue damage in brain ischaemia results from a complex pathophysiological cascade comprising various distinct pathological events. Ischaemia leads to brain damage by stimulating many processes, such as excitotoxicity, oxidative stress, inflammation, acidotoxicity, and apoptosis. Nevertheless, less attention has been given to biophysical factors, including the organization of the cytoskeleton and the mechanical properties of cells. Therefore, in the present study, we sought to evaluate whether the oxygen-glucose deprivation (OGD) procedure, which is a commonly accepted experimental model of ischaemia, could affect cytoskeleton organization and the paracrine immune response. The abovementioned aspects were examined ex vivo in organotypic hippocampal cultures (OHCs) subjected to the OGD procedure. We measured cell death/viability, nitric oxide (NO) release, and hypoxia-inducible factor 1α (HIF-1α) levels. Next, the impact of the OGD procedure on cytoskeletal organization was evaluated using combined confocal fluorescence microscopy (CFM) and atomic force microscopy (AFM). Concurrently, to find whether there is a correlation between biophysical properties and the immune response, we examined the impact of OGD on the levels of crucial ischaemia cytokines (IL-1ß, IL-6, IL-18, TNF-α, IL-10, IL-4) and chemokines (CCL3, CCL5, CXCL10) in OHCs and calculated Pearsons' and Spearman's rank correlation coefficients. The results of the current study demonstrated that the OGD procedure intensified cell death and nitric oxide release and led to the potentiation of HIF-1α release in OHCs. Moreover, we presented significant disturbances in the organization of the cytoskeleton (actin fibers, microtubular network) and cytoskeleton-associated protein 2 (MAP-2), which is a neuronal marker. Simultaneously, our study provided new evidence that the OGD procedure leads to the stiffening of OHCs and a malfunction in immune homeostasis. A negative linear correlation between tissue stiffness and branched IBA1 positive cells after the OGD procedure suggests the pro-inflammatory polarization of microglia. Moreover, the negative correlation of pro- and positive anti-inflammatory factors with actin fibers density indicates an opposing effect of the immune mediators on the rearrangement of cytoskeleton induced by OGD procedure in OHCs. Our study constitutes a basis for further research and provides a rationale for integrating biomechanical and biochemical methods in studying the pathomechanism of stroke-related brain damage. Furthermore, presented data pointed out the interesting direction of proof-of-concept studies, in which follow-up may establish new targets for brain ischemia therapy.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Oxigênio/metabolismo , Glucose/metabolismo , Isquemia Encefálica/metabolismo , Actinas/metabolismo , Óxido Nítrico/metabolismo , Acidente Vascular Cerebral/metabolismo , Hipocampo/metabolismo , AVC Isquêmico/metabolismo , Citoesqueleto/metabolismo
20.
ACS Chem Neurosci ; 14(20): 3869-3882, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37775304

RESUMO

A substantial body of evidence demonstrates an association between a malfunction in the resolution of acute inflammation and the development of chronic inflammation. Recently, in this context, the importance of formyl peptide receptor 2 (FPR2) has been underlined. FPR2 activity is modulated by a wide range of endogenous ligands, including specialized pro-resolving mediators (SPMs) (e.g., LXA4 and AT-LXA4) and synthetic ligands. Since SPMs have unfavorable pharmacokinetic properties, we aimed to evaluate the protective and pro-resolving effects of a new potent FPR2 agonist, compound CMC23, in organotypic hippocampal cultures (OHCs) stimulated with lipopolysaccharide (LPS). The protective activity of CMC23 limited the lactate dehydrogenase release in LPS-stimulated cultures. This activity was mediated by the interaction with FPR2 as pretreatment with the FPR2 selective antagonist WRW4 abolished CMC23-induced protection. Furthermore, decreased levels of pro-inflammatory IL-1ß and IL-6 were observed after CMC23 administration in LPS-treated OHCs. CMC23 also diminished the LPS-induced increase in IL-17A and both IL-23 subunits p19 and p40 in OHCs. Finally, we demonstrated that CMC23 exerts its beneficial impact via the STAT3/SOCS3 signaling pathway since it attenuated the level of phospho-STAT3 and maintained the LPS-induced SOCS3 levels in OHCs. Collectively, our research implies that the new FPR2 agonist CMC23 has beneficial protective and anti-inflammatory properties in nanomolar doses and FPR2 represents a promising target for the enhancement of inflammation resolution.


Assuntos
Doenças Neuroinflamatórias , Receptores de Formil Peptídeo , Humanos , Endotoxinas , Hipocampo/metabolismo , Lipopolissacarídeos/toxicidade , Receptores de Formil Peptídeo/agonistas , Doenças Neuroinflamatórias/induzido quimicamente , Doenças Neuroinflamatórias/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA