Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Blood ; 140(14): 1592-1606, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-35767701

RESUMO

Adult hematopoietic stem cells (HSCs) are predominantly quiescent and can be activated in response to acute stress such as infection or cytotoxic insults. STAT1 is a pivotal downstream mediator of interferon (IFN) signaling and is required for IFN-induced HSC proliferation, but little is known about the role of STAT1 in regulating homeostatic hematopoietic stem/progenitor cells (HSPCs). Here, we show that loss of STAT1 altered the steady state HSPC landscape, impaired HSC function in transplantation assays, delayed blood cell regeneration following myeloablation, and disrupted molecular programs that protect HSCs, including control of quiescence. Our results also reveal STAT1-dependent functional HSC heterogeneity. A previously unrecognized subset of homeostatic HSCs with elevated major histocompatibility complex class II (MHCII) expression (MHCIIhi) displayed molecular features of reduced cycling and apoptosis and was refractory to 5-fluorouracil-induced myeloablation. Conversely, MHCIIlo HSCs displayed increased megakaryocytic potential and were preferentially expanded in CALR mutant mice with thrombocytosis. Similar to mice, high MHCII expression is a feature of human HSCs residing in a deeper quiescent state. Our results therefore position STAT1 at the interface of stem cell heterogeneity and the interplay between stem cells and the adaptive immune system, areas of broad interest in the wider stem cell field.


Assuntos
Células-Tronco Hematopoéticas , Megacariócitos , Fator de Transcrição STAT1 , Animais , Proliferação de Células , Fluoruracila/farmacologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Interferons , Megacariócitos/metabolismo , Camundongos , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo
2.
Blood ; 139(23): 3387-3401, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35073399

RESUMO

Rare hematopoietic stem and progenitor cell (HSPC) pools outside the bone marrow (BM) contribute to blood production in stress and disease but remain ill-defined. Although nonmobilized peripheral blood (PB) is routinely sampled for clinical management, the diagnosis and monitoring potential of PB HSPCs remain untapped, as no healthy PB HSPC baseline has been reported. Here we comprehensively delineate human extramedullary HSPC compartments comparing spleen, PB, and mobilized PB to BM using single-cell RNA-sequencing and/or functional assays. We uncovered HSPC features shared by extramedullary tissues and others unique to PB. First, in contrast to actively dividing BM HSPCs, we found no evidence of substantial ongoing hematopoiesis in extramedullary tissues at steady state but report increased splenic HSPC proliferative output during stress erythropoiesis. Second, extramedullary hematopoietic stem cells/multipotent progenitors (HSCs/MPPs) from spleen, PB, and mobilized PB share a common transcriptional signature and increased abundance of lineage-primed subsets compared with BM. Third, healthy PB HSPCs display a unique bias toward erythroid-megakaryocytic differentiation. At the HSC/MPP level, this is functionally imparted by a subset of phenotypic CD71+ HSCs/MPPs, exclusively producing erythrocytes and megakaryocytes, highly abundant in PB but rare in other adult tissues. Finally, the unique erythroid-megakaryocytic-skewing of PB is perturbed with age in essential thrombocythemia and ß-thalassemia. Collectively, we identify extramedullary lineage-primed HSPC reservoirs that are nonproliferative in situ and report involvement of splenic HSPCs during demand-adapted hematopoiesis. Our data also establish aberrant composition and function of circulating HSPCs as potential clinical indicators of BM dysfunction.


Assuntos
Hematopoese , Células-Tronco Hematopoéticas , Adulto , Medula Óssea , Células da Medula Óssea/fisiologia , Eritropoese , Humanos , Megacariócitos
3.
Plant Cell Environ ; 44(5): 1451-1467, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33464569

RESUMO

Nicotinamide-adenine dinucleotide (NAD) is involved in redox homeostasis and acts as a substrate for NADases, including poly(ADP-ribose) polymerases (PARPs) that add poly(ADP-ribose) polymers to proteins and DNA, and sirtuins that deacetylate proteins. Nicotinamide, a by-product of NADases increases circadian period in both plants and animals. In mammals, the effect of nicotinamide on circadian period might be mediated by the PARPs and sirtuins because they directly bind to core circadian oscillator genes. We have investigated whether PARPs and sirtuins contribute to the regulation of the circadian oscillator in Arabidopsis. We found no evidence that PARPs and sirtuins regulate the circadian oscillator of Arabidopsis or are involved in the response to nicotinamide. RNA-seq analysis indicated that PARPs regulate the expression of only a few genes, including FLOWERING LOCUS C. However, we found profound effects of reduced sirtuin 1 expression on gene expression during the day but not at night, and an embryo lethal phenotype in knockouts. Our results demonstrate that PARPs and sirtuins are not associated with NAD regulation of the circadian oscillator and that sirtuin 1 is associated with daytime regulation of gene expression.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/fisiologia , Ritmo Circadiano/genética , Regulação da Expressão Gênica de Plantas , Poli(ADP-Ribose) Polimerases/metabolismo , Sirtuínas/metabolismo , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Ritmo Circadiano/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Mutação/genética , NAD+ Nucleosidase/antagonistas & inibidores , NAD+ Nucleosidase/metabolismo , Niacinamida/farmacologia , Fenótipo , Poli(ADP-Ribose) Polimerases/genética , Sementes/efeitos dos fármacos , Sementes/metabolismo
4.
Cell Genom ; 3(12): 100426, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38116120

RESUMO

Acute myeloid leukemia (AML) and myeloid neoplasms develop through acquisition of somatic mutations that confer mutation-specific fitness advantages to hematopoietic stem and progenitor cells. However, our understanding of mutational effects remains limited to the resolution attainable within immunophenotypically and clinically accessible bulk cell populations. To decipher heterogeneous cellular fitness to preleukemic mutational perturbations, we performed single-cell RNA sequencing of eight different mouse models with driver mutations of myeloid malignancies, generating 269,048 single-cell profiles. Our analysis infers mutation-driven perturbations in cell abundance, cellular lineage fate, cellular metabolism, and gene expression at the continuous resolution, pinpointing cell populations with transcriptional alterations associated with differentiation bias. We further develop an 11-gene scoring system (Stem11) on the basis of preleukemic transcriptional signatures that predicts AML patient outcomes. Our results demonstrate that a single-cell-resolution deep characterization of preleukemic biology has the potential to enhance our understanding of AML heterogeneity and inform more effective risk stratification strategies.

5.
Stem Cell Reports ; 16(6): 1614-1628, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-33961793

RESUMO

Advances in the isolation and gene expression profiling of single hematopoietic stem cells (HSCs) have permitted in-depth resolution of their molecular program. However, long-term HSCs can only be isolated to near purity from adult mouse bone marrow, thereby precluding studies of their molecular program in different physiological states. Here, we describe a powerful 7-day HSC hibernation culture system that maintains HSCs as single cells in the absence of a physical niche. Single hibernating HSCs retain full functional potential compared with freshly isolated HSCs with respect to colony-forming capacity and transplantation into primary and secondary recipients. Comparison of hibernating HSC molecular profiles to their freshly isolated counterparts showed a striking degree of molecular similarity, further resolving the core molecular machinery of HSC self-renewal while also identifying key factors that are potentially dispensable for HSC function, including members of the AP1 complex (Jun, Fos, and Ncor2), Sult1a1 and Cish. Finally, we provide evidence that hibernating mouse HSCs can be transduced without compromising their self-renewal activity and demonstrate the applicability of hibernation cultures to human HSCs.


Assuntos
Arilsulfotransferase/metabolismo , Técnicas de Cultura de Células/métodos , Células-Tronco Hematopoéticas/fisiologia , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Fator de Transcrição AP-1/metabolismo , Transcriptoma , Animais , Transplante de Medula Óssea/métodos , Ciclo Celular , Diferenciação Celular , Células Cultivadas , Citocinas/metabolismo , Hibernação , Camundongos , Camundongos Endogâmicos C57BL , Complexos Multiproteicos/metabolismo , Análise de Célula Única , Nicho de Células-Tronco
6.
Sci Adv ; 6(48)2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33239297

RESUMO

Frameshift mutations in CALR (calreticulin) are associated with essential thrombocythemia (ET), but the stages at and mechanisms by which mutant CALR drives transformation remain incompletely defined. Here, we use single-cell approaches to examine the hematopoietic stem/progenitor cell landscape in a mouse model of mutant CALR-driven ET. We identify a trajectory linking hematopoietic stem cells (HSCs) with megakaryocytes and prospectively identify a previously unknown intermediate population that is overrepresented in the disease state. We also show that mutant CALR drives transformation primarily from the earliest stem cell compartment, with some contribution from megakaryocyte progenitors. Last, relative to wild-type HSCs, mutant CALR HSCs show increases in JAK-STAT signaling, the unfolded protein response, cell cycle, and a previously undescribed up-regulation of cholesterol biosynthesis. Overall, we have identified a novel megakaryocyte-biased cell population that is increased in a mouse model of ET and described transcriptomic changes linking CALR mutations to increased HSC proliferation and megakaryopoiesis.

7.
J Biomed Semantics ; 7(1): 41, 2016 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-27338101

RESUMO

BACKGROUND: Biological sequences, such as proteins, have been provided with annotations that assign functional information. These functional annotations are associations of proteins (or other biological sequences) with descriptors characterizing their biological roles. However, not all proteins are fully (or even at all) annotated. This annotation incompleteness limits our ability to make sound assertions about the functional coherence within sets of proteins. Annotation incompleteness is a problematic issue when measuring semantic functional similarity of biological sequences since they can only capture a limited amount of all the semantic aspects the sequences may encompass. METHODS: Instead of relying uniquely on single (reductive) metrics, this work proposes a comprehensive approach for assessing functional coherence within protein sets. The approach entails using visualization and term enrichment techniques anchored in specific domain knowledge, such as a protein family. For that purpose we evaluate two novel functional coherence metrics, mUI and mGIC that combine aspects of semantic similarity measures and term enrichment. RESULTS: These metrics were used to effectively capture and measure the local similarity cores within protein sets. Hence, these metrics coupled with visualization tools allow an improved grasp on three important functional annotation aspects: completeness, agreement and coherence. CONCLUSIONS: Measuring the functional similarity between proteins based on their annotations is a non trivial task. Several metrics exist but due both to characteristics intrinsic to the nature of graphs and extrinsic natures related to the process of annotation each measure can only capture certain functional annotation aspects of proteins. Hence, when trying to measure the functional coherence of a set of proteins a single metric is too reductive. Therefore, it is valuable to be aware of how each employed similarity metric works and what similarity aspects it can best capture. Here we test the behaviour and resilience of some similarity metrics.


Assuntos
Anotação de Sequência Molecular/métodos , Proteínas/metabolismo , Bases de Dados de Proteínas , Proteínas/química
8.
PLoS One ; 10(3): e0119631, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25794277

RESUMO

Functional context for biological sequence is provided in the form of annotations. However, within a group of similar sequences there can be annotation heterogeneity in terms of coverage and specificity. This in turn can introduce issues regarding the interpretation of actual functional similarity and overall functional coherence of such a group. One way to mitigate such issues is through the use of visualization and statistical techniques. Therefore, in order to help interpret this annotation heterogeneity we created a web application that generates Gene Ontology annotation graphs for protein sets and their associated statistics from simple frequencies to enrichment values and Information Content based metrics. The publicly accessible website http://xldb.di.fc.ul.pt/gryfun/ currently accepts lists of UniProt accession numbers in order to create user-defined protein sets for subsequent annotation visualization and statistical assessment. GRYFUN is a freely available web application that allows GO annotation visualization of protein sets and which can be used for annotation coherence and cohesiveness analysis and annotation extension assessments within under-annotated protein sets.


Assuntos
Biologia Computacional/métodos , Bases de Dados de Proteínas , Ontologia Genética , Anotação de Sequência Molecular/métodos , Software , Navegador , Conjuntos de Dados como Assunto
9.
Front Genet ; 4: 201, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24130572

RESUMO

Protein functional annotation consists in associating proteins with textual descriptors elucidating their biological roles. The bulk of annotation is done via automated procedures that ultimately rely on annotation transfer. Despite a large number of existing protein annotation procedures the ever growing protein space is never completely annotated. One of the facets of annotation incompleteness derives from annotation uncertainty. Often when protein function cannot be predicted with enough specificity it is instead conservatively annotated with more generic terms. In a scenario of protein families or functionally related (or even dissimilar) sets this leads to a more difficult task of using annotations to compare the extent of functional relatedness among all family or set members. However, we postulate that identifying sub-sets of functionally coherent proteins annotated at a very specific level, can help the annotation extension of other incompletely annotated proteins within the same family or functionally related set. As an example we analyse the status of annotation of a set of CAZy families belonging to the Polysaccharide Lyase class. We show that through the use of visualization methods and semantic similarity based metrics it is possible to identify families and respective annotation terms within them that are suitable for possible annotation extension. Based on our analysis we then propose a semi-automatic methodology leading to the extension of single annotation terms within these partially annotated protein sets or families.

10.
ISRN Bioinform ; 2012: 619427, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-25937941

RESUMO

Chemical entities are ubiquitous through the biomedical literature and the development of text-mining systems that can efficiently identify those entities are required. Due to the lack of available corpora and data resources, the community has focused its efforts in the development of gene and protein named entity recognition systems, but with the release of ChEBI and the availability of an annotated corpus, this task can be addressed. We developed a machine-learning-based method for chemical entity recognition and a lexical-similarity-based method for chemical entity resolution and compared them with Whatizit, a popular-dictionary-based method. Our methods outperformed the dictionary-based method in all tasks, yielding an improvement in F-measure of 20% for the entity recognition task, 2-5% for the entity-resolution task, and 15% for combined entity recognition and resolution tasks.

11.
Methods Mol Biol ; 760: 141-57, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21779995

RESUMO

Candidate gene identification deals with associating genes to underlying biological phenomena, such as diseases and specific disorders. It has been shown that classes of diseases with similar phenotypes are caused by functionally related genes. Currently, a fair amount of knowledge about the functional characterization can be found across several public databases; however, functional descriptors can be ambiguous, domain specific, and context dependent. In order to cope with these issues, the Gene Ontology (GO) project developed a bio-ontology of broad scope and wide applicability. Thus, the structured and controlled vocabulary of terms provided by the GO project describing the biological roles of gene products can be very helpful in candidate gene identification approaches. The method presented here uses GO annotation data in order to identify the most meaningful functional aspects occurring in a given set of related gene products. The method measures this meaningfulness by calculating an e-value based on the frequency of annotation of each GO term in the set of gene products versus the total frequency of annotation. Then after selecting a GO term related to the underlying biological phenomena being studied, the method uses semantic similarity to rank the given gene products that are annotated to the term. This enables the user to further narrow down the list of gene products and identify those that are more likely of interest.


Assuntos
Estudos de Associação Genética/métodos , Anotação de Sequência Molecular , Bases de Dados de Proteínas , Humanos , Armazenamento e Recuperação da Informação , Internet , Proteômica , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA