Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Mol Biol Rep ; 49(10): 9903-9913, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35759082

RESUMO

The immune system interacts with cancer cells in multiple intricate ways that can shield the host against hyper-proliferation but can also contribute to malignancy. Understanding the protective roles of the immune system in its interaction with cancer cells can help device new and alternate therapeutic strategies. Many immunotherapeutic methodologies, including adaptive cancer therapy, cancer peptide vaccines, monoclonal antibodies, and immune checkpoint treatment, have transformed the traditional cancer treatment landscape. However, many questions remain unaddressed. The development of personalized combination therapy and neoantigen-based cancer vaccines would be the avant-garde approach to cancer treatment. Desirable chemotherapy should be durable, safe, and target-specific. Managing both tumor (intrinsic factors) and its microenvironment (extrinsic factors) are critical for successful immunotherapy. This review describes current approaches and their advancement related to monoclonal antibody-related clinical trials, new cytokine therapy, a checkpoint inhibitor, adoptive T cell therapy, cancer vaccine, and oncolytic virus.


Assuntos
Vacinas Anticâncer , Neoplasias , Anticorpos Monoclonais/uso terapêutico , Vacinas Anticâncer/uso terapêutico , Citocinas , Humanos , Fatores Imunológicos , Imunoterapia/métodos , Imunoterapia Adotiva , Neoplasias/tratamento farmacológico , Microambiente Tumoral
2.
Carcinogenesis ; 42(6): 842-852, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-33513602

RESUMO

Diet is believed to be an important factor in the pathogenesis of inflammatory bowel disease. High consumption of dietary fructose has been shown to exacerbate experimental colitis, an effect mediated through the gut microbiota. This study evaluated whether dietary alterations could attenuate the detrimental effects of a high-fructose diet (HFrD) in experimental colitis. First, we determined whether the procolitic effects of a HFrD could be reversed by switching mice from a HFrD to a control diet. This diet change completely prevented HFrD-induced worsening of acute colitis, in association with a rapid normalization of the microbiota. Second, we tested the effects of dietary fiber, which demonstrated that psyllium was the most effective type of fiber for protecting against HFrD-induced worsening of acute colitis, compared with pectin, inulin, or cellulose. In fact, supplemental psyllium nearly completely prevented the detrimental effects of the HFrD, an effect associated with a shift in the gut microbiota. We next determined whether the protective effects of these interventions could be extended to chronic colitis and colitis-associated tumorigenesis. Using the azoxymethane/dextran sodium sulfate model, we first demonstrated that HFrD feeding exacerbated chronic colitis and increased colitis-associated tumorigenesis. Using the same dietary changes tested in the acute colitis setting, we also showed that mice were protected from HFrD-mediated enhanced chronic colitis and tumorigenesis, upon either diet switching or psyllium supplementation. Taken together, these findings suggest that high consumption of fructose may enhance colon tumorigenesis associated with long-standing colitis, an effect that could be reduced by dietary alterations.


Assuntos
Colite/complicações , Neoplasias Colorretais/prevenção & controle , Sulfato de Dextrana/toxicidade , Dieta , Fibras na Dieta/administração & dosagem , Frutose/toxicidade , Inflamação/prevenção & controle , Animais , Colite/induzido quimicamente , Colite/patologia , Neoplasias Colorretais/etiologia , Neoplasias Colorretais/patologia , Inflamação/etiologia , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
3.
Am J Physiol Gastrointest Liver Physiol ; 321(2): G232-G242, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34133236

RESUMO

The Western diet has been suggested to contribute to the rising incidence of inflammatory bowel diseases. This has led to the hypothesis that fructose, a component of the Western diet, could play a role in the pathogenesis of inflammatory bowel diseases. A high-fructose diet is known to exacerbate experimental colitis. This study tested whether the expression of GLUT5, the fructose transporter, is a determinant of the severity of experimental colitis during elevated fructose consumption and whether ileal inflammation is associated with altered GLUT5 expression in Crohn's disease. Studies in genetically engineered mice showed that in comparison to Glut5+/+ mice, feeding a 15 kcal% fructose diet to Glut5-/- mice led to worse dextran sodium sulfate (DSS)-induced colitis. This effect was associated with elevated levels of colonic fructose and a shift in the fecal microbiota in Glut5-/- mice. Importantly, treatment with broad-spectrum antibiotics protected against the worsening of colitis mediated by dietary fructose in Glut5-/- mice. Gene expression analysis revealed that GLUT5 levels are reduced in the intestines of patients with ileal Crohn's disease. Moreover, levels of GLUT5 negatively correlated with expression of proinflammatory mediators in these samples. Collectively, these results demonstrate that dietary constituent (fructose)-host gene (GLUT5) interactions can shape the colonic microbiota, thereby impacting the severity of colitis.NEW & NOTEWORTHY This study provides the first evidence that reduced levels of GLUT5, the fructose transporter, worsen experimental colitis upon fructose feeding, an effect mediated by changes in the gut microbiota. Moreover, GLUT5 expression is reduced in Crohn's ileitis. Overall, these findings demonstrate the importance of interactions between dietary fructose and host GLUT5 as determinants of both the composition of colonic microbiota and severity of experimental colitis.


Assuntos
Colite Ulcerativa/metabolismo , Doença de Crohn/metabolismo , Frutose/metabolismo , Transportador de Glucose Tipo 5/metabolismo , Animais , Colite Ulcerativa/etiologia , Açúcares da Dieta/efeitos adversos , Açúcares da Dieta/metabolismo , Frutose/efeitos adversos , Microbioma Gastrointestinal , Transportador de Glucose Tipo 5/genética , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Dodecilsulfato de Sódio/toxicidade
4.
Immunology ; 158(1): 19-34, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31215020

RESUMO

Studies with gene-deficient and gnotobiotic mice have identified many host and microbial factors that contribute to induced colitis, but information on whether specific factors determine susceptibility under more physiological conditions is lacking. Using wild-type strains that differ in their IgA response but harbor a diverse gut microbiome, we found that the IgA-high strain CBA/CaJ (CBA) is resistant to acute colitis induced with dextran sodium sulfate (DSS), unlike the IgA-low strain C57BL/6 (B6). Resistance was associated with extensive IgA-coating of fecal bacteria, lower fecal bacterial loads and greater abundance of barrier-protective transcripts in colonic tissues under homeostatic conditions. Fecal microbial transplant (FT) experiments revealed that disease induction in B6 mice was associated with a cohort of bacteria that are not targeted by IgA. However, CBA mice continued to be resistant to colitis induction following FTs from B6 mice, indicating that they are able to contain such colitogenic members. In support of a role for bacterial exclusion in resistance, oral administration of immunoglobulins decreased DSS-induced disease in B6 mice. In F1 mice derived separately with CBA and B6 dams and in F1 mice backcrossed to the two parental strains, resistance segregated with the IgA response of the pups and not with barrier-associated transcripts or bacterial loads. Interestingly, B6 pups foster-nursed on CBA dams continued to be susceptible in later life, whereas CBA pups foster-nursed on B6 dams continued to be resistant. Together, the data indicate that a high-IgA response in adult life can protect against colitis and compensate for IgA deficiency in early life.


Assuntos
Bactérias/imunologia , Colite/prevenção & controle , Colo/microbiologia , Sulfato de Dextrana , Microbioma Gastrointestinal/imunologia , Imunoglobulina A/imunologia , Animais , Animais Recém-Nascidos , Carga Bacteriana , Colite/induzido quimicamente , Colite/imunologia , Colite/microbiologia , Colo/imunologia , Colo/metabolismo , Cruzamentos Genéticos , Modelos Animais de Doenças , Transplante de Microbiota Fecal , Fezes/microbiologia , Feminino , Imunoglobulina A/metabolismo , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Lactação , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Endogâmicos DBA , Permeabilidade , Gravidez , Especificidade da Espécie
5.
J Immunol ; 197(3): 761-70, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27342845

RESUMO

CD40 signaling during B cell activation is known to inhibit terminal differentiation and promote memory generation. Blimp-1 is essential for efficient plasma cell (PC) generation, and although CD40 signaling is known to inhibit Blimp-1 induction during B cell activation, the mechanisms involved have been unclear. We report that CD40 signaling induces miR-125b that targets Blimp-1 transcripts, and increases amounts of the ubiquitin ligase Hrd1 that targets BLIMP-1 protein for proteasomal degradation. CD40 signaling also inhibits the early unfolded protein response (UPR) of activated B cells that precedes the induction of terminal differentiation, and Hrd1 feeds into this pathway by targeting the core UPR component IRE-1α. Strikingly, CD40 signaling in the absence of BCR- or TLR-ligation also repressed Blimp-1 transcripts, suggesting that noncognate ligation of CD40 via T-B interactions may repress Blimp-1 in vivo. In support of this, we find that naive B cells purified from CD40-CD154 interaction-deficient mice express higher amounts of Blimp-1 and lower amounts of microRNAs and Hrd1. Higher basal amounts of Blimp-1 in naive CD40(-/-) B cells correlate with an increased tendency of the cells to undergo terminal differentiation upon LPS stimulation. Conversely, a 24-h exposure to CD40 ligation during LPS stimulation of wild-type B cells is sufficient to inhibit PC generation. The data show that CD40-mediated inhibition of PC generation is via engagement of multiple pathways that involve repression of Blimp-1 and inhibition of the UPR that prepares cells to become professional secretors. They also show that constitutive CD40 signaling in vivo involving bystander T-B interactions can calibrate B cell differentiation outcomes.


Assuntos
Antígenos CD40/metabolismo , Diferenciação Celular/imunologia , Ativação Linfocitária/imunologia , Plasmócitos/citologia , Transdução de Sinais/imunologia , Animais , Linfócitos B/citologia , Linfócitos B/imunologia , Antígenos CD40/imunologia , Citometria de Fluxo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Plasmócitos/imunologia , Fator 1 de Ligação ao Domínio I Regulador Positivo , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Transcrição/imunologia , Fatores de Transcrição/metabolismo
6.
Vaccines (Basel) ; 11(11)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-38005979

RESUMO

Immunoglobulin A (IgA) is critical in the immune response against respiratory infections like COVID-19 and influenza [...].

7.
Crohns Colitis 360 ; 5(3): otad030, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37288325

RESUMO

Background: Classically, IgA in the gut prevents the invasion of microorganisms to systemic organs through the process of neutralization and immune exclusion. Interestingly, recent reports suggest that IgA might help in biofilm formation and promote bacterial growth inside the intestine. Methods: In this study, we used flow cytometry, ELISA, and chemical models of colitis to test whether the quality and quantity of IgA can select for bacterial persistence in the gut. Results: We found that members of Proteobacteria, such as γ-Proteobacteria and SFB, are preferentially coated by IgA in WT mice. In the partial absence of either T-dependent or -independent IgA responses, there are no significant differences in the frequency of bacteria coated with IgA in mice. However, Rag-/- mice that lack all antibodies had a severe reduction in Proteobacteria and were resistant to DSS-induced colitis, suggesting that secretory IgA might be essential for differential retention of these taxa in the mouse gut. Rag-/- littermates in the F2 generation generated from (B6 × Rag-/-) F1 mice acquired the underrepresented bacteria taxa such as γ-Proteobacteria through vertical transmission of flora. They died soon after weaning, possibly due to the acquired flora. Additionally, continued exposure of Rag-/- mice to B6 flora by cohousing mice led to the acquisition of γ-Proteobacteria and mortality. Conclusions: Together, our results indicate that host survival in the complete absence of an IgA response necessitates the exclusion of specific bacterial taxa from the gut microbiome.

8.
Vaccines (Basel) ; 10(6)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35746487

RESUMO

The field of immunotherapy has undergone radical conceptual changes over the last decade. There are various examples of immunotherapy, including the use of monoclonal antibodies, cancer vaccines, tumor-infecting viruses, cytokines, adjuvants, and autologous T cells carrying chimeric antigen receptors (CARs) that can bind cancer-specific antigens known as adoptive immunotherapy. While a lot has been achieved in the field of T-cell immunotherapy, only a fraction of patients (20%) see lasting benefits from this mode of treatment, which is why there is a critical need to turn our attention to other immune cells. B cells have been shown to play both anti- and pro-tumorigenic roles in tumor tissue. In this review, we shed light on the dual nature of B cells in the tumor microenvironment. Furthermore, we discussed the different factors affecting the biology and function of B cells in tumors. In the third section, we described B-cell-based immunotherapies and their clinical applications and challenges. These current studies provide a springboard for carrying out future mechanistic studies to help us unleash the full potential of B cells in immunotherapy.

9.
Genes (Basel) ; 13(10)2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36292799

RESUMO

The recent increase in publicly available metagenomic datasets with geospatial metadata has made it possible to determine location-specific, microbial fingerprints from around the world. Such fingerprints can be useful for comparing microbial niches for environmental research, as well as for applications within forensic science and public health. To determine the regional specificity for environmental metagenomes, we examined 4305 shotgun-sequenced samples from the MetaSUB Consortium dataset-the most extensive public collection of urban microbiomes, spanning 60 different cities, 30 countries, and 6 continents. We were able to identify city-specific microbial fingerprints using supervised machine learning (SML) on the taxonomic classifications, and we also compared the performance of ten SML classifiers. We then further evaluated the five algorithms with the highest accuracy, with the city and continental accuracy ranging from 85-89% to 90-94%, respectively. Thereafter, we used these results to develop Cassandra, a random-forest-based classifier that identifies bioindicator species to aid in fingerprinting and can infer higher-order microbial interactions at each site. We further tested the Cassandra algorithm on the Tara Oceans dataset, the largest collection of marine-based microbial genomes, where it classified the oceanic sample locations with 83% accuracy. These results and code show the utility of SML methods and Cassandra to identify bioindicator species across both oceanic and urban environments, which can help guide ongoing efforts in biotracing, environmental monitoring, and microbial forensics (MF).


Assuntos
Metagenômica , Microbiota , Metagenômica/métodos , Metagenoma , Microbiota/genética , Aprendizado de Máquina Supervisionado , Cidades
10.
Gut Microbes ; 14(1): 2105609, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35915556

RESUMO

The gut microbiome is intricately coupled with immune regulation and metabolism, but its role in Coronavirus Disease 2019 (COVID-19) is not fully understood. Severe and fatal COVID-19 is characterized by poor anti-viral immunity and hypercoagulation, particularly in males. Here, we define multiple pathways by which the gut microbiome protects mammalian hosts from SARS-CoV-2 intranasal infection, both locally and systemically, via production of short-chain fatty acids (SCFAs). SCFAs reduced viral burdens in the airways and intestines by downregulating the SARS-CoV-2 entry receptor, angiotensin-converting enzyme 2 (ACE2), and enhancing adaptive immunity via GPR41 and 43 in male animals. We further identify a novel role for the gut microbiome in regulating systemic coagulation response by limiting megakaryocyte proliferation and platelet turnover via the Sh2b3-Mpl axis. Taken together, our findings have unraveled novel functions of SCFAs and fiber-fermenting gut bacteria to dampen viral entry and hypercoagulation and promote adaptive antiviral immunity.


Assuntos
COVID-19 , Microbioma Gastrointestinal , Animais , Antivirais/uso terapêutico , Ácidos Graxos Voláteis , Masculino , Mamíferos/metabolismo , Peptidil Dipeptidase A/metabolismo , SARS-CoV-2
11.
Methods Cell Biol ; 163: 123-135, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33785161

RESUMO

Long-standing inflammatory bowel diseases (IBD) increase the risk for the development of colorectal cancer (CRC). This increase is due in large part to chronic intestinal inflammation which exposes the epithelium to pro-carcinogenic factors. Moreover, enhanced mucosal proliferation associated with repetitive wound healing events following an inflammatory episode, further enhance this pro-tumorigenic environment. Although multiple factors involved in IBD pathogenesis and its associated neoplasia have been identified, more work is needed to develop and improve therapies to ameliorate disease and thus reduce CRC risk. Murine models have served as useful tools to identify factors involved in the pathogenesis of colitis-associated neoplasia and test therapies. These include both chemically-induced and genetic engineering approaches, resulting in chronic inflammation and tumor development. Here, we present a step-by-step method of inducing inflammation-associated colon neoplasia by combining administration of azoxymethane and dextran sodium sulfate in mice. A detailed description of this methodology will facilitate its use in the scientific community with the goals of further elucidating the mechanisms underlying colitis-associated tumorigenesis and developing risk reducing interventions.


Assuntos
Colite , Neoplasias do Colo , Neoplasias Colorretais , Animais , Azoximetano/toxicidade , Colite/induzido quimicamente , Neoplasias do Colo/induzido quimicamente , Neoplasias Colorretais/induzido quimicamente , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Sulfatos
12.
Cell Mol Gastroenterol Hepatol ; 11(2): 525-550, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32961355

RESUMO

BACKGROUND & AIMS: The incidence of inflammatory bowel diseases has increased over the last half century, suggesting a role for dietary factors. Fructose consumption has increased in recent years. Recently, a high fructose diet (HFrD) was shown to enhance dextran sodium sulfate (DSS)-induced colitis in mice. The primary objectives of the current study were to elucidate the mechanism(s) underlying the pro-colitic effects of dietary fructose and to determine whether this effect occurs in both microbially driven and genetic models of colitis. METHODS: Antibiotics and germ-free mice were used to determine the relevance of microbes for HFrD-induced worsening of colitis. Mucus thickness and quality were determined by histologic analyses. 16S rRNA profiling, in situ hybridization, metatranscriptomic analyses, and fecal metabolomics were used to determine microbial composition, spatial distribution, and metabolism. The significance of HFrD on pathogen and genetic-driven models of colitis was determined by using Citrobacter rodentium infection and Il10-/- mice, respectively. RESULTS: Reducing or eliminating bacteria attenuated HFrD-mediated worsening of DSS-induced colitis. HFrD feeding enhanced access of gut luminal microbes to the colonic mucosa by reducing thickness and altering the quality of colonic mucus. Feeding a HFrD also altered gut microbial populations and metabolism including reduced protective commensal and bile salt hydrolase-expressing microbes and increased luminal conjugated bile acids. Administration of conjugated bile acids to mice worsened DSS-induced colitis. The HFrD also worsened colitis in Il10-/- mice and mice infected with C rodentium. CONCLUSIONS: Excess dietary fructose consumption has a pro-colitic effect that can be explained by changes in the composition, distribution, and metabolic function of resident enteric microbiota.


Assuntos
Colite/imunologia , Açúcares da Dieta/efeitos adversos , Frutose/efeitos adversos , Microbioma Gastrointestinal/efeitos dos fármacos , Animais , Citrobacter rodentium/patogenicidade , Colite/diagnóstico , Colite/genética , Colite/microbiologia , Colo/imunologia , Colo/microbiologia , Colo/patologia , Sulfato de Dextrana/administração & dosagem , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/imunologia , Humanos , Interleucina-10/genética , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Knockout , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA