Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Environ Microbiol ; 24(10): 4652-4669, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36059126

RESUMO

Plant core microbiomes consist of persistent key members that provide critical host functions, but their assemblages can be interrupted by biotic and abiotic stresses. The pathobiome is comprised of dynamic microbial interactions in response to disease status of the host. Hence, identifying variation in the core microbiome and pathobiome can significantly advance our understanding of microbial-microbial interactions and consequences for disease progression and host functions. In this study, we combined glasshouse and field studies to analyse the soil and plant rhizosphere microbiome of cotton plants (Gossypium hirsutum) in the presence of a cotton-specific fungal pathogen, Fusarium oxysporum f. sp. vasinfectum (FOV). We found that FOV directly and consistently altered the rhizosphere microbiome, but the biocontrol agents enabled microbial assemblages to resist pathogenic stress. Using co-occurrence network analysis of the core microbiome, we identified the pathobiome comprised of the pathogen and key associate phylotypes in the cotton microbiome. Isolation and application of some negatively correlated pathobiome members provided protection against plant infection. Importantly, our field survey from multiple cotton fields validated the pattern and responses of core microbiomes under FOV infection. This study advances key understanding of core microbiome responses and existence of plant pathobiomes, which provides a novel framework to better manage plant diseases in agriculture and natural settings.


Assuntos
Fusarium , Microbiota , Fusarium/genética , Gossypium/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Solo
2.
New Phytol ; 234(6): 1951-1959, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35118660

RESUMO

Climate change is increasing global temperatures and the frequency and severity of droughts in many regions. These anthropogenic stresses pose a significant threat to plant performance and crop production. The plant-associated microbiome modulates the impacts of biotic and abiotic stresses on plant fitness. However, climate change-induced alteration in composition and activities of plant microbiomes can affect host functions. Here, we highlight recent advancements in our understanding of the impact of climate change (warming and drought) on plant-microbiome interactions and on their ecological functions from genome to ecosystem scales. We identify knowledge gaps, propose new concepts and make recommendations for future research directions. It is proposed that in the short term (years to decades), the adaptation of plants to climate change is mainly driven by the plant microbiome, whereas in the long term (century to millennia), the adaptation of plants will be driven equally by eco-evolutionary interactions between the plant microbiome and its host. A better understanding of the response of the plant and its microbiome interactions to climate change and the ways in which microbiomes can mitigate the negative impacts will better inform predictions of climate change impacts on primary productivity and aid in developing management and policy tools to improve the resilience of plant systems.


Assuntos
Ecossistema , Microbiota , Mudança Climática , Secas , Plantas/genética , Estresse Fisiológico/fisiologia
4.
Microorganisms ; 11(12)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38138128

RESUMO

The ability to sense and direct movement along chemical gradients is known as 'chemotaxis' and is a common trait among rhizosphere microorganisms, which are attracted to organic compounds released from plant roots. In response to stress, the compounds released from roots can change and may recruit symbionts that enhance host stress tolerance. Decoding this language of attraction could support the development of microbiome management strategies that would enhance agricultural production and sustainability. In this study, we employ a culture-independent bait-trap chemotaxis assay to capture microbial communities attracted to root exudates from phosphorus (P)-sufficient and P-deficient Arabidopsis thaliana Col-0 plants. The captured populations were then enumerated and characterised using flow cytometry and phylogenetic marker gene sequencing, respectively. Exudates attracted significantly more cells than the control but did not differ between P treatments. Relative to exudates from P-sufficient plants, those collected from P-deficient plants attracted a significantly less diverse bacterial community that was dominated by members of the Paenibacillus, which is a genus known to include powerful phosphate solubilisers and plant growth promoters. These results suggest that in response to P deficiency, Arabidopsis exudates attract organisms that could help to alleviate nutrient stress.

5.
Microb Biotechnol ; 14(4): 1258-1268, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34156754

RESUMO

The use of microbial tools to sustainably increase agricultural production has received significant attention from researchers, industries and policymakers. Over the past decade, the market access and development of microbial products have been accelerated by (i) the recent advances in plant-associated microbiome science, (ii) the pressure from consumers and policymakers for increasing crop productivity and reducing the use of agrochemicals, (iii) the rising threats of biotic and abiotic stresses, (iv) the loss of efficacy of some agrochemicals and plant breeding programs and (v) the calls for agriculture to contribute towards mitigating climate change. Although the sector is still in its infancy, the path towards effective microbial products is taking shape and the global market of these products has increased faster than that of agrochemicals. Promising results from using microbes either as biofertilizers or biopesticides have been continually reported, fuelling optimism and high expectations for the sector. However, some limitations, often related to low efficacy and inconsistent performance in field conditions, urgently need to be addressed to promote a wider use of microbial tools. We propose that advances in in situ microbiome manipulation approaches, such as the use of products containing synthetic microbial communities and novel prebiotics, have great potential to overcome some of these current constraints. Much more progress is expected in the development of microbial inoculants as areas such as synthetic biology and nano-biotechnology advance. If key technical, translational and regulatory issues are addressed, microbial tools will not only play an important role in sustainably boosting agricultural production over the next few decades but also contribute towards other sustainable development goals, including job creation and mitigation of the impacts of climate change.


Assuntos
Inoculantes Agrícolas , Agricultura , Mudança Climática , Produção Agrícola , Plantas
6.
Methods Mol Biol ; 2232: 61-75, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33161540

RESUMO

Plant Growth Promoting Bacteria (PGPB) are a group of beneficial microorganisms that can positively influence plant fitness and development by improving nutrient acquisition, influencing global plant hormone levels (direct effect), or by reducing the detrimental effects of various pathogens on plant development (indirect effect). The use of PGPB in agriculture as formulated bioinoculants is a potential approach to reduce the negative environmental impacts caused by the continuous application of chemical fertilizers and pesticides. The evaluation of a great number of bacteria in the laboratory for key traits involved in the improvement of plant fitness is a suitable strategy to find prospective candidates for bioinoculants. This chapter presents the main methods described in the literature to quickly screen potential candidates from a bacterial collection to directly and indirectly promote the plant growth.


Assuntos
Agricultura/métodos , Desenvolvimento Vegetal/genética , Raízes de Plantas/crescimento & desenvolvimento , Plantas/microbiologia , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Plantas/genética , Microbiologia do Solo
7.
Methods Mol Biol ; 2232: 283-289, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33161554

RESUMO

Here, we describe a novel "bait-trap" assay, which facilitates capture of soil microorganisms that exhibit chemotaxis to chemical attractants, such as root exudates. These multi-population assemblages represent potential guilds and can be characterized using a wide-range of culture-dependent and culture-independent methods. While in this example, we use root exudates as bait, any water-soluble compound(s) could be used. Hence, the potential applications for the assay are diverse.


Assuntos
Quimiotaxia/genética , Exsudatos de Plantas/metabolismo , Raízes de Plantas/microbiologia , Microbiologia do Solo , Raízes de Plantas/genética , Rizosfera , Solo/química
8.
Springerplus ; 3: 382, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25110630

RESUMO

The mangrove ecosystem is a coastal tropical biome located in the transition zone between land and sea that is characterized by periodic flooding, which confers unique and specific environmental conditions on this biome. In these ecosystems, the vegetation is dominated by a particular group of plant species that provide a unique environment harboring diverse groups of microorganisms, including the endophytic microorganisms that are the focus of this study. Because of their intimate association with plants, endophytic microorganisms could be explored for biotechnologically significant products, such as enzymes, proteins, antibiotics and others. Here, we isolated endophytic microorganisms from two mangrove species, Rhizophora mangle and Avicennia nitida, that are found in streams in two mangrove systems in Bertioga and Cananéia, Brazil. Bacillus was the most frequently isolated genus, comprising 42% of the species isolated from Cananéia and 28% of the species from Bertioga. However, other common endophytic genera such as Pantoea, Curtobacterium and Enterobacter were also found. After identifying the isolates, the bacterial communities were evaluated for enzyme production. Protease activity was observed in 75% of the isolates, while endoglucanase activity occurred in 62% of the isolates. Bacillus showed the highest activity rates for amylase and esterase and endoglucanase. To our knowledge, this is the first reported diversity analysis performed on endophytic bacteria obtained from the branches of mangrove trees and the first overview of the specific enzymes produced by different bacterial genera. This work contributes to our knowledge of the microorganisms and enzymes present in mangrove ecosystems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA