Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
J Struct Biol ; 213(2): 107714, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33667636

RESUMO

SLC26A5 transporter prestin is fundamental for the higher hearing sensitivity and frequency selectivity of mammals. Prestin is a voltage-dependent transporter found in the cochlear outer hair cells responsible for their electromotility. Intracellular chloride binding is considered essential for voltage sensitivity and electromotility. Prestin is composed by a transmembrane domain and by a cytosolic domain called STAS. There is evidence of a calcium/calmodulin regulation of prestin mediated by the STAS domain. Using different biophysical techniques, namely SEC, CD, ITC, MST, NMR and SAXS, here we demonstrate and characterize the direct interaction between calmodulin and prestin STAS. We show that the interaction is calcium-dependent and that involves residues at the N-terminal end of the "variable loop". This is an intrinsically disordered insertion typical of the STAS domains of the SLC26 family of transporters whose function is still unclear. We derive a low-resolution model of the STAS/CaM complex, where only one lobe of calmodulin is engaged in the interaction, and build a model for the entire dimeric prestin in complex with CaM, which can use the unoccupied lobe to interact with other regions of prestin or with other regulatory proteins. We show that also a non-mammalian STAS can interact with calmodulin via the variable loop. These data start to shed light on the regulatory role of the STAS variable loop of prestin.


Assuntos
Calmodulina/metabolismo , Transportadores de Sulfato/química , Transportadores de Sulfato/metabolismo , Animais , Sítios de Ligação , Cálcio/metabolismo , Calmodulina/química , Galinhas , Cromatografia em Gel , Dicroísmo Circular , Espectroscopia de Ressonância Magnética , Conformação Proteica , Domínios Proteicos , Espalhamento a Baixo Ângulo , Difração de Raios X
2.
Int J Mol Sci ; 22(15)2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34361083

RESUMO

The mammalian protein prestin is expressed in the lateral membrane wall of the cochlear hair outer cells and is responsible for the electromotile response of the basolateral membrane, following hyperpolarisation or depolarisation of the cells. Its impairment marks the onset of severe diseases, like non-syndromic deafness. Several studies have pointed out possible key roles of residues located in the Transmembrane Domain (TMD) that differentiate mammalian prestins as incomplete transporters from the other proteins belonging to the same solute-carrier (SLC) superfamily, which are classified as complete transporters. Here, we exploit the homology of a prototypical incomplete transporter (rat prestin, rPres) and a complete transporter (zebrafish prestin, zPres) with target structures in the outward open and inward open conformations. The resulting models are then embedded in a model membrane and investigated via a rigorous molecular dynamics simulation protocol. The resulting trajectories are analyzed to obtain quantitative descriptors of the equilibration phase and to assess a structural comparison between proteins in different states, and between different proteins in the same state. Our study clearly identifies a network of key residues at the interface between the gate and the core domains of prestin that might be responsible for the conformational change observed in complete transporters and hindered in incomplete transporters. In addition, we study the pathway of Cl- ions in the presence of an applied electric field towards their putative binding site in the gate domain. Based on our simulations, we propose a tilt and shift mechanism of the helices surrounding the ion binding cavity as the working principle of the reported conformational changes in complete transporters.


Assuntos
Proteínas de Transporte de Ânions/química , Membrana Celular/metabolismo , Simulação de Dinâmica Molecular , Transportadores de Sulfato/química , Proteínas de Peixe-Zebra/química , Sequência de Aminoácidos , Animais , Proteínas de Transporte de Ânions/metabolismo , Sítios de Ligação , Estrutura Secundária de Proteína , Ratos , Homologia de Sequência , Transportadores de Sulfato/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
3.
J Nat Prod ; 82(4): 1014-1018, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30840451

RESUMO

Casein kinase 2 (CK2) is an anti-apoptotic cancer-sustaining protein kinase. Its crystallographic structures with the natural compounds coumestrol, a phytoestrogen, and boldine, an alkaloid, are reported. Coumestrol shows different inhibitory activity against the isolated catalytic α-subunit and the α2ß2 holoenzyme and is able to discriminate between two conformations of the hinge/αD region, whose intrinsic flexibility is a relevant selectivity determinant among kinases. Boldine explores a small cavity at the bottom of the ATP-binding pocket through a local deviation from planarity, a unique case among CK2 inhibitors. The two compounds have different impacts on protein flexibility, which correlate with their different properties.


Assuntos
Trifosfato de Adenosina/metabolismo , Aporfinas/metabolismo , Caseína Quinase II/metabolismo , Cumestrol/metabolismo , Estrutura Molecular
4.
Biochem J ; 474(14): 2405-2416, 2017 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-28572157

RESUMO

The regulatory mechanism of protein kinase CK2 has still to be fully clarified. The prevailing hypothesis is that CK2 is controlled by a self-polymerisation mechanism leading to inactive supramolecular assemblies that, when needed, can be disassembled into the α2ß2 monomer, the active form of the holoenzyme. In vitro, monomeric α2ß2 seems present only at high ionic strengths, typically 0.35-0.50 M NaCl, while at lower salt concentrations oligomers are formed. In the present study, size-exclusion chromatography (SEC), dynamic light scattering (DLS), small-angle X-ray scattering (SAXS) and mutagenesis have been employed for the characterization of the oligomeric states of CK2 in solution. SAXS measurements at 0.35 M NaCl show for the first time the shape of the α2ß2 active monomer in solution. At 0.25 M salt, despite single average properties indicating an aggregated holoenzyme, deconvolution analysis of SAXS data reveals an equilibrium involving not only circular trimeric and linear oligomeric (3-4 units) forms of α2ß2, but also considerable amounts of the monomer. Together SAXS and mutagenesis confirm the presence in solution of the oligomers deduced by crystal structures. The lack of intermediate species such as αß2, α or ß2 indicates that the holoenzyme is a strong complex that does not spontaneously dissociate, challenging what was recently proposed on the basis of mass spectrometry data. A significant novel finding is that a considerable amount of monomer, the active form of CK2, is present also at low salt. The solution properties of CK2 shown in the present study complement the model of regulation by polymerization.


Assuntos
Caseína Quinase II/química , Modelos Moleculares , Caseína Quinase II/genética , Caseína Quinase II/metabolismo , Cromatografia em Gel , Dimerização , Difusão Dinâmica da Luz , Holoenzimas/química , Holoenzimas/genética , Holoenzimas/metabolismo , Humanos , Peso Molecular , Mutação , Concentração Osmolar , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estabilidade Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espalhamento a Baixo Ângulo , Solubilidade , Eletricidade Estática
5.
Hum Mutat ; 38(12): 1761-1773, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28895244

RESUMO

Here, we report the identification of three novel missense mutations in the calsequestrin-1 (CASQ1) gene in four patients with tubular aggregate myopathy. These CASQ1 mutations affect conserved amino acids in position 44 (p.(Asp44Asn)), 103 (p.(Gly103Asp)), and 385 (p.(Ile385Thr)). Functional studies, based on turbidity and dynamic light scattering measurements at increasing Ca2+ concentrations, showed a reduced Ca2+ -dependent aggregation for the CASQ1 protein containing p.Asp44Asn and p.Gly103Asp mutations and a slight increase in Ca2+ -dependent aggregation for the p.Ile385Thr. Accordingly, limited trypsin proteolysis assay showed that p.Asp44Asn and p.Gly103Asp were more susceptible to trypsin cleavage in the presence of Ca2+ in comparison with WT and p.Ile385Thr. Analysis of single muscle fibers of a patient carrying the p.Gly103Asp mutation showed a significant reduction in response to caffeine stimulation, compared with normal control fibers. Expression of CASQ1 mutations in eukaryotic cells revealed a reduced ability of all these CASQ1 mutants to store Ca2+ and a reduced inhibitory effect of p.Ile385Thr and p.Asp44Asn on store operated Ca2+ entry. These results widen the spectrum of skeletal muscle diseases associated with CASQ1 and indicate that these mutations affect properties critical for correct Ca2+ handling in skeletal muscle fibers.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Cálcio/metabolismo , Variação Genética , Proteínas Mitocondriais/genética , Miopatias Congênitas Estruturais/genética , Adulto , Idoso , Sequência de Aminoácidos , Substituição de Aminoácidos , Proteínas de Ligação ao Cálcio/metabolismo , Calsequestrina , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Mitocondriais/metabolismo , Modelos Moleculares , Músculo Esquelético/metabolismo , Mutação de Sentido Incorreto , Multimerização Proteica , Proteólise , Proteínas Recombinantes , Alinhamento de Sequência , Imagem com Lapso de Tempo , Sequenciamento Completo do Genoma
6.
Biochem J ; 473(4): 365-70, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26635354

RESUMO

Prestin is a unique ATP- and Ca(2+)-independent molecular motor with piezoelectric characteristics responsible for the electromotile properties of mammalian cochlear outer hair cells, i.e. the capacity of these cells to modify their length in response to electric stimuli. This 'electromotility' is at the basis of the exceptional sensitivity and frequency selectivity distinctive of mammals. Prestin belongs to the SLC26 (solute carrier 26) family of anion transporters and needs anions to function properly, particularly Cl(-). In the present study, using X-ray crystallography we reveal that the STAS (sulfate transporter and anti-sigma factor antagonist) domain of mammalian prestin, considered an 'incomplete' transporter, harbours an unanticipated anion-binding site. In parallel, we present the first crystal structure of a prestin STAS domain from a non-mammalian vertebrate prestin (chicken) that behaves as a 'full' transporter. Notably, in chicken STAS, the anion-binding site is lacking because of a local structural rearrangement, indicating that the presence of the STAS anion-binding site is exclusive to mammalian prestin.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Transporte de Ânions/química , Proteínas de Transporte de Ânions/genética , Ânions , Sítios de Ligação , Galinhas , Cristalografia por Raios X , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Ratos , Homologia de Sequência de Aminoácidos , Transportadores de Sulfato
7.
Biochim Biophys Acta ; 1844(4): 722-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24486797

RESUMO

Protein kinase CK2 is a pleiotropic serine/threonine kinase responsible for the generation of a substantial proportion of the human phosphoproteome. CK2 is generally found as a tetramer with two catalytic, α and α' and two non catalytic ß subunits. CK2α C-terminal tail phosphorylation is regulated during the mitotic events and the absence of these phosphosites in α' suggests an isoform specialization. We used a proteomic approach to identify proteins specifically phosphorylated by a CK2α phosphomimetic mutant, CK2αT344ET360ES362ES370E (CK2α4E), in human neuroblastoma SKNBE cellular extract. One of these proteins is lysine-specific demethylase 1 (LSD1 or KDM1A), an important player of the epigenetic machinery. LSD1 is a FAD-dependent amine oxidase and promotes demethylation of lysine 4 and lysine 9 of mono- and di-methylated histone H3. We found that LSD1 is a new substrate and an interacting partner of protein kinase CK2. Three CK2 phosphosites, (Ser131, Ser137 and Ser166) in the N-terminal region of LSD1 have been identified. This domain is found in all chordates but not in more ancient organisms and it is not essential for LSD1 catalytic event while it could modulate the interaction with CK2 and with other partners in gene repressing and activating complexes. Our data support the view that the phosphorylation of the N-terminal domain by CK2 may represent a mechanism for regulating histone methylation, disclosing a new role for protein kinase CK2 in epigenetics.


Assuntos
Caseína Quinase II/metabolismo , Epigênese Genética , Histona Desmetilases/metabolismo , Histonas/metabolismo , Neurônios/metabolismo , Subunidades Proteicas/metabolismo , Sequência de Aminoácidos , Animais , Caseína Quinase II/genética , Linhagem Celular Tumoral , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Histona Desmetilases/genética , Histonas/genética , Humanos , Lisina/genética , Lisina/metabolismo , Metilação , Dados de Sequência Molecular , Mutação , Neurônios/citologia , Fosforilação , Estrutura Terciária de Proteína , Subunidades Proteicas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serina/genética , Serina/metabolismo , Transdução de Sinais
8.
Cell Mol Life Sci ; 71(16): 3173-85, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24442476

RESUMO

It has been proposed that dual inhibitors of protein kinases CK2 and PIM-1 are tools particularly valuable to induce apoptosis of cancer cells, a property, however, implying cell permeability, which is lacking in the case of selective CK2/PIM-1 inhibitors developed so far. To fill this gap, we have derivatized the scaffold of the promiscuous CK2 inhibitor TBI with a deoxyribose moiety, generating TDB, a selective, cell-permeable inhibitor of CK2 and PIM-1. Here, we shed light on the structural features underlying the potency and narrow selectivity of TDB by exploiting a number of TDB analogs and by solving the 3D structure of the TDB/CK2 complex at 1.25 Å resolution, one of the highest reported so far for this kinase. We also show that the cytotoxic efficacy of TDB is almost entirely due to apoptosis, is accompanied by parallel inhibition of cellular CK2 and PIM-1, and is superior to both those observed combining individual inhibitors of CK2 and PIM-1 and by treating cells with the CK2 inhibitor CX4945. These data, in conjunction with the observations that cancer cells are more susceptible than non-cancer cells to TDB and that such a sensitivity is maintained in a multi-drug resistance background, highlight the pharmacological potential of this compound.


Assuntos
Benzimidazóis/química , Benzimidazóis/farmacologia , Caseína Quinase II/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Benzimidazóis/farmacocinética , Caseína Quinase II/química , Caseína Quinase II/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular , Proliferação de Células/efeitos dos fármacos , Halogenação , Humanos , Cinética , Modelos Moleculares , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Inibidores de Proteínas Quinases/farmacocinética , Proteínas Proto-Oncogênicas c-pim-1/química , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Relação Estrutura-Atividade
9.
Nat Commun ; 15(1): 3199, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615009

RESUMO

The increasing availability of experimental and computational protein structures entices their use for function prediction. Here we develop an automated procedure to identify enzymes involved in metabolic reactions by assessing substrate conformations docked to a library of protein structures. By screening AlphaFold-modeled vitamin B6-dependent enzymes, we find that a metric based on catalytically favorable conformations at the enzyme active site performs best (AUROC Score=0.84) in identifying genes associated with known reactions. Applying this procedure, we identify the mammalian gene encoding hydroxytrimethyllysine aldolase (HTMLA), the second enzyme of carnitine biosynthesis. Upon experimental validation, we find that the top-ranked candidates, serine hydroxymethyl transferase (SHMT) 1 and 2, catalyze the HTMLA reaction. However, a mouse protein absent in humans (threonine aldolase; Tha1) catalyzes the reaction more efficiently. Tha1 did not rank highest based on the AlphaFold model, but its rank improved to second place using the experimental crystal structure we determined at 2.26 Å resolution. Our findings suggest that humans have lost a gene involved in carnitine biosynthesis, with HTMLA activity of SHMT partially compensating for its function.


Assuntos
Aldeído Liases , Frutose-Bifosfato Aldolase , Humanos , Animais , Camundongos , Frutose-Bifosfato Aldolase/genética , Catálise , Biblioteca Gênica , Glicina Hidroximetiltransferase/genética , Carnitina , Mamíferos
10.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 10): 2161-4, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24100334

RESUMO

Bromodomains are involved in the regulation of chromatin architecture and transcription through the recognition of acetylated lysines in histones and other proteins. Many of them are considered to be relevant pharmacological targets for different pathologies. Three crystallographic structures of the N-terminal bromodomain of BRD4 in complex with low-molecular-weight fragments are presented. They show that similar molecules mimicking acetylated lysine bind the bromodomain with different orientations and exploit different interactions. It is also advised to avoid DMSO when searching for low-affinity fragments that interact with bromodomains since DMSO binds in the acetylated lysine-recognition pocket of BRD4.


Assuntos
Proteínas Nucleares/química , Fragmentos de Peptídeos/química , Fatores de Transcrição/química , Acetilação , Proteínas de Ciclo Celular , Cristalografia por Raios X , Humanos , Peso Molecular , Proteínas Nucleares/metabolismo , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Fatores de Transcrição/metabolismo
11.
Cell Mol Life Sci ; 69(3): 449-60, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21720886

RESUMO

8-hydroxy-4-methyl-9-nitrobenzo(g)chromen-2-one (NBC) has been found to be a fairly potent ATP site-directed inhibitor of protein kinase CK2 (Ki = 0.22 µM). Here, we show that NBC also inhibits PIM kinases, especially PIM1 and PIM3, the latter as potently as CK2. Upon removal of the nitro group, to give 8-hydroxy-4-methyl-benzo(g)chromen-2-one (here referred to as "denitro NBC", dNBC), the inhibitory power toward CK2 is almost entirely lost (IC(50) > 30 µM) whereas that toward PIM1 and PIM3 is maintained; in addition, dNBC is a potent inhibitor of a number of other kinases that are weakly inhibited or unaffected by NBC, with special reference to DYRK1A whose IC(50) values with NBC and dNBC are 15 and 0.60 µM, respectively. Therefore, the observation that NBC, unlike dNBC, is a potent inducer of apoptosis is consistent with the notion that this effect is mediated by inhibition of endogenous CK2. The structural features underlying NBC selectivity have been revealed by inspecting its 3D structure in complex with the catalytic subunit of Z. mays CK2. The crucial role of the nitro group is exerted both through a direct electrostatic interaction with the side chain of Lys68 and, indirectly, by enhancing the acidic dissociation constant of the adjacent hydroxyl group which interacts with a conserved water molecule in the deepest part of the cavity. By contrast, the very same nitro group is deleterious for the binding to the active site of DYRK1A, as disclosed by molecular docking. This provides the rationale for preferential inhibition of DYRK1A by dNBC.


Assuntos
Caseína Quinase II/antagonistas & inibidores , Cumarínicos/química , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Animais , Apoptose , Sítios de Ligação , Caseína Quinase II/genética , Caseína Quinase II/metabolismo , Linhagem Celular , Sobrevivência Celular , Cumarínicos/metabolismo , Cristalografia por Raios X , Humanos , Cinética , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Ratos , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Quinases Dyrk
12.
Biochemistry ; 51(31): 6097-107, 2012 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-22794353

RESUMO

Sixteen flavonoids and related compounds have been tested for their ability to inhibit three acidophilic Ser/Thr protein kinases: the Golgi apparatus casein kinase (G-CK) recently identified with protein FAM20C, protein kinase CK1, and protein kinase CK2. While G-CK is entirely insensitive to all compounds up to 40 µM concentration, consistent with the view that it is not a member of the kinome, and CK1 is variably inhibited in an isoform-dependent manner by fisetin and luteolin, and to a lesser extent by myricetin and quercetin, CK2 is susceptible to drastic inhibition by many flavonoids, displaying with six of them IC(50) values < 1 µM. A common denominator of these compounds (myricetin, quercetin, fisetin, kaempferol, luteolin, and apigenin) is a flavone scaffold with at least two hydroxyl groups at positions 7 and 4'. Inhibition is competitive with respect to the phospho-donor substrate ATP. The crystal structure of apigenin and luteolin in complex with the catalytic subunit of Zea mays CK2 has been solved, revealing their ability to interact with both the hinge region (Val116) and the positive area near Lys68 and the conserved water W1, the two main polar ligand anchoring points in the CK2 active site. Modeling experiments account for the observation that luteolin but not apigenin inhibits also CK1. The observation that luteolin shares its pyrocatechol moiety with tyrphostin AG99 prompted us to solve also the structure of this compound in complex with CK2. AG99 was found inside the ATP pocket, consistent with its mode of inhibition competitive with respect to ATP. As in the case of luteolin, the pyrocatechol group of AG99 is critical for binding, interacting with the positive area in the deepest part of the CK2 active site.


Assuntos
Caseína Quinase II/antagonistas & inibidores , Caseína Quinase II/química , Flavonoides/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Tirfostinas/farmacologia , Trifosfato de Adenosina/metabolismo , Ligação Competitiva , Caseína Quinase II/metabolismo , Domínio Catalítico , Flavonoides/metabolismo , Humanos , Concentração Inibidora 50 , Modelos Moleculares , Inibidores de Proteínas Quinases/metabolismo , Tirfostinas/metabolismo , Zea mays/enzimologia
13.
J Struct Biol ; 177(2): 382-91, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22186626

RESUMO

CK2 is a Ser/Thr protein kinase essential for cell viability. Its activity is anomalously high in several solid (prostate, mammary gland, lung, kidney and head and neck) and haematological tumours (AML, CML and PML), creating conditions favouring the onset of cancer. Cancer cells become addicted to high levels of CK2 activity and therefore this kinase is a remarkable example of "non-oncogene addiction". CK2 is a validated target for cancer therapy with one inhibitor in phase I clinical trials. Several crystal structures of CK2 are available, many in complex with ATP-competitive inhibitors, showing the presence of regions with remarkable flexibility. We present the structural characterisation of these regions by means of seven new crystal structures, in the apo form and in complex with inhibitors. We confirm previous findings about the unique flexibility of the CK2α catalytic subunit in the hinge/αD region, the p-loop and the ß4ß5 loop, and show here that there is no clear-cut correlation between the conformations of these flexible zones. Our findings challenge some of the current interpretations on the functional role of these regions and dispute the hypothesis that small ligands stabilize an inactive state. The mobility of the hinge/αD region in the human enzyme is unique among protein kinases, and this can be exploited for the development of more selective ATP-competitive inhibitors. The identification of different ligand binding modes to a secondary site can provide hints for the design of non-ATP-competitive inhibitors targeting the interaction between the α catalytic and the ß regulatory subunits.


Assuntos
Proteínas de Plantas/química , Motivos de Aminoácidos , Antraquinonas/química , Apoenzimas/química , Sítios de Ligação , Caseína Quinase II/química , Domínio Catalítico , Cristalografia por Raios X , Emodina/química , Histidina/química , Humanos , Modelos Moleculares , Ligação Proteica , Inibidores de Proteínas Quinases/química , Zea mays
14.
Biochim Biophys Acta ; 1814(6): 824-33, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20940063

RESUMO

Usually, spectroscopic data on proteins in solution are interpreted at molecular level on the basis of the three-dimensional structures determined in the crystalline state. While it is widely recognized that the protein crystal structures are reliable models for the solution 3D structures, nevertheless it is also clear that sometimes the crystallization process can introduce some "artifacts" that can make difficult or even flaw the attempt to correlate the properties in solution with those in the crystalline state. In general, therefore, it would be desirable to identify some sort of control. In the case of the spectroscopic properties of proteins, the most straightforward check is to acquire data not only in solution but also on the crystals. In this regard, the Green Fluorescent Protein (GFP) is an interesting case in that a massive quantity of data correlating the spectroscopic properties in solution with the structural information in the crystalline state is available in literature. Despite that, a relatively limited amount of spectroscopic studies on single crystals of GFP or related FPs have been described. Here we review and discuss the main spectroscopic (in solution) and structural (in crystals) studies performed on the GFP and related fluorescent proteins, together with the spectroscopic analyses on various FPs members in the crystalline state. One main conclusion is that "in cristallo" spectroscopic studies are useful in providing new opportunities for gathering information not available in solution and are highly recommended to reliably correlate solution properties with structural features. This article is part of a Special Issue entitled: Protein Structure and Function in the Crystalline State.


Assuntos
Proteínas de Fluorescência Verde/química , Cristalografia/métodos , Modelos Moleculares , Análise Espectral/métodos
15.
Front Mol Biosci ; 9: 906390, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720133

RESUMO

CK2 is a Ser/Thr protein kinase involved in many cellular processes such as gene expression, cell cycle progression, cell growth and differentiation, embryogenesis, and apoptosis. Aberrantly high CK2 activity is widely documented in cancer, but the enzyme is also involved in several other pathologies, such as diabetes, inflammation, neurodegeneration, and viral infections, including COVID-19. Over the last years, a large number of small-molecules able to inhibit the CK2 activity have been reported, mostly acting with an ATP-competitive mechanism. Polyoxometalates (POMs), are metal-oxide polyanionic clusters of various structures and dimensions, with unique chemical and physical properties. POMs were identified as nanomolar CK2 inhibitors, but their mechanism of inhibition and CK2 binding site remained elusive. Here, we present the biochemical and biophysical characterizing of the interaction of CK2α with a ruthenium-based polyoxometalate, [Ru4(µ-OH)2(µ-O)4(H2O)4 (γ-SiW10O36)2]10- (Ru4POM), a potent inhibitor of CK2. Using analytical Size-Exclusion Chromatography (SEC), Isothermal Titration Calorimetry (ITC), and SAXS we were able to unravel the mechanism of inhibition of Ru4POM. Ru4POM binds to the positively-charged substrate binding region of the enzyme through electrostatic interactions, triggering the dimerization of the enzyme which consequently is inactivated. Ru4POM is the first non-peptide molecule showing a substrate-competitive mechanism of inhibition for CK2. On the basis of SAXS data, a structural model of the inactivated (CK2α)2(Ru4POM)2 complex is presented.

16.
Acta Crystallogr D Struct Biol ; 78(Pt 3): 363-378, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35234150

RESUMO

The SARS-CoV-2 main protease (Mpro) has a pivotal role in mediating viral genome replication and transcription of the coronavirus, making it a promising target for drugs against the COVID-19 pandemic. Here, a crystal structure is presented in which Mpro adopts an inactive state that has never been observed before, called new-inactive. It is shown that the oxyanion loop, which is involved in substrate recognition and enzymatic activity, adopts a new catalytically incompetent conformation and that many of the key interactions of the active conformation of the enzyme around the active site are lost. Solvation/desolvation energetic contributions play an important role in the transition from the inactive to the active state, with Phe140 moving from an exposed to a buried environment and Asn142 moving from a buried environment to an exposed environment. In new-inactive Mpro a new cavity is present near the S2' subsite, and the N-terminal and C-terminal tails, as well as the dimeric interface, are perturbed, with partial destabilization of the dimeric assembly. This novel conformation is relevant both for comprehension of the mechanism of action of Mpro within the catalytic cycle and for the successful structure-based drug design of antiviral drugs.


Assuntos
COVID-19/virologia , Proteases 3C de Coronavírus/química , SARS-CoV-2/química , Domínio Catalítico , Cristalografia por Raios X , Humanos , Modelos Moleculares , Conformação Proteica , Multimerização Proteica
17.
Chem Sci ; 13(13): 3674-3687, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35432906

RESUMO

We report a fast-track computationally driven discovery of new SARS-CoV-2 main protease (Mpro) inhibitors whose potency ranges from mM for the initial non-covalent ligands to sub-µM for the final covalent compound (IC50 = 830 ± 50 nM). The project extensively relied on high-resolution all-atom molecular dynamics simulations and absolute binding free energy calculations performed using the polarizable AMOEBA force field. The study is complemented by extensive adaptive sampling simulations that are used to rationalize the different ligand binding poses through the explicit reconstruction of the ligand-protein conformation space. Machine learning predictions are also performed to predict selected compound properties. While simulations extensively use high performance computing to strongly reduce the time-to-solution, they were systematically coupled to nuclear magnetic resonance experiments to drive synthesis and for in vitro characterization of compounds. Such a study highlights the power of in silico strategies that rely on structure-based approaches for drug design and allows the protein conformational multiplicity problem to be addressed. The proposed fluorinated tetrahydroquinolines open routes for further optimization of Mpro inhibitors towards low nM affinities.

18.
Biochemistry ; 50(39): 8478-88, 2011 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-21870818

RESUMO

5-(3-Chlorophenylamino)benzo[c][2,6]naphthyridine-8-carboxylic acid (CX-4945), the first clinical stage inhibitor of protein kinase CK2 for the treatment of cancer, is representative of a new class of CK2 inhibitors with K(i) values in the low nanomolar range and unprecedented selectivity versus other kinases. Here we present the crystal structure of the complexes of CX-4945 and two analogues (CX-5011 and CX-5279) with the catalytic subunit of human CK2. Consistent with their ATP-competitive mode of inhibition, all three compounds bind in the active site of CK2 (type I inhibitors). The tricyclic scaffold of the inhibitors superposes on the adenine of ATP, establishing multiple hydrophobic interactions with the binding cavity. The more extended scaffold, as compared to that of ATP, allows the carboxylic function, shared by all three ligands, to penetrate into the deepest part of the active site where it makes interactions with conserved water W1 and Lys-68, thus accounting for the crucial role of this negatively charged group in conferring high potency to this class of inhibitors. The presence of a pyrimidine in CX-5011 and in CX-5279 instead of a pyridine (as in CX-4945) ring is likely to account for the higher specificity of these compounds whose Gini coefficients, calculated by profiling them against panels of 102 and/or 235 kinases, are significantly higher than that of CX-4945 (0.735 and 0.755, respectively, vs 0.615), marking the highest selectivity ever reported for CK2 inhibitors.


Assuntos
Caseína Quinase II/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Domínio Catalítico , Sobrevivência Celular/efeitos dos fármacos , Cristalografia por Raios X , Humanos , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Naftiridinas/química , Naftiridinas/farmacologia , Neoplasias/tratamento farmacológico , Fenazinas , Inibidores de Proteínas Quinases/uso terapêutico , Pirimidinas/química , Pirimidinas/farmacologia , Quinolinas/química , Quinolinas/farmacologia
19.
Mol Cell Biochem ; 356(1-2): 67-73, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21739155

RESUMO

Ser/Thr protein kinase CK2 is involved in several fundamental processes that regulate the cell life, such as cell cycle progression, gene expression, cell growth, and differentiation and embryogenesis. In various cancers, CK2 shows a markedly elevated activity that has been associated with conditions that favor the onset of the tumor phenotype. This prompts to numerous studies aimed at the identification of compounds that are able to inhibit the catalytic activity of this oncogenic kinase, in particular, of ATP-competitive inhibitors. The many available crystal structures indicate that this enzyme owns some regions of remarkable flexibility which were associated to important functional properties. Of particular relevance is the flexibility, unique among protein kinases, of the hinge region and the following helix αD. This study attempts to unveil the structural bases of this characteristic of CK2. We also analyze some controversial issues concerning the functional interpretation of structural data on maize and human CK2 and try to recognize what is reasonably established and what is still unclear about this enzyme. This analysis can be useful also to outline some principles at the basis of the development of effective ATP-competitive CK2 inhibitors.


Assuntos
Caseína Quinase II/química , Caseína Quinase II/metabolismo , Trifosfato de Adenosina/metabolismo , Motivos de Aminoácidos , Humanos , Modelos Moleculares , Estrutura Secundária de Proteína , Relação Estrutura-Atividade
20.
Biochem J ; 421(3): 387-95, 2009 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-19432557

RESUMO

Emodin (1,3,8-trihydroxy-6-methyl-anthraquinone) is a moderately potent and poorly selective inhibitor of protein kinase CK2, one of the most pleiotropic serine/threonine protein kinases, implicated in neoplasia and in other global diseases. By virtual screening of the MMS (Molecular Modeling Section) database, we have now identified quinalizarin (1,2,5,8-tetrahydroxyanthraquinone) as an inhibitor of CK2 that is more potent and selective than emodin. CK2 inhibition by quinalizarin is competitive with respect to ATP, with a Ki value of approx. 50 nM. Tested at 1 microM concentration on a panel of 75 protein kinases, quinalizarin drastically inhibits only CK2, with a promiscuity score (11.1), which is the lowest ever reported so far for a CK2 inhibitor. Especially remarkable is the ability of quinalizarin to discriminate between CK2 and a number of kinases, notably DYRK1a (dual-specificity tyrosine-phosphorylated and -regulated kinase), PIM (provirus integration site for Moloney murine leukaemia virus) 1, 2 and 3, HIPK2 (homeodomain-interacting protein kinase-2), MNK1 [MAPK (mitogen-activated protein kinase)-interacting kinase 1], ERK8 (extracellular-signal-regulated kinase 8) and PKD1 (protein kinase D 1), which conversely tend to be inhibited as drastically as CK2 by commercially available CK2 inhibitors. The determination of the crystal structure of a complex between quinalizarin and CK2alpha subunit highlights the relevance of polar interactions in stabilizing the binding, an unusual characteristic for a CK2 inhibitor, and disclose other structural features which may account for the narrow selectivity of this compound. Tested on Jurkat cells, quinalizarin proved able to inhibit endogenous CK2 and to induce apoptosis more efficiently than the commonly used CK2 inhibitors TBB (4,5,6,7-tetrabromo-1H-benzotriazole) and DMAT (2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole).


Assuntos
Antraquinonas/farmacologia , Caseína Quinase II/antagonistas & inibidores , Caseína Quinase II/metabolismo , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Animais , Antraquinonas/química , Apoptose/efeitos dos fármacos , Sítios de Ligação , Caseína Quinase II/química , Caseína Quinase II/genética , Linhagem Celular , Cristalografia por Raios X , Humanos , Células Jurkat , Cinética , Conformação Molecular , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA