Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Opt Lett ; 49(5): 1257-1260, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38426987

RESUMO

The introduction of quantum methods in spectroscopy can provide enhanced performance and technical advantages in the management of noise. We investigate the application of quantum illumination in a pump and probe experiment. Thermal lensing in a suspension of gold nanorods is explored using a classical beam as the pump and the emission from parametric downconversion as the probe. We obtain an insightful description of the behavior of the suspension under pumping with a method known to provide good noise rejection. Our findings are a further step toward investigating the effects of quantum light in complex plasmonic media.

2.
Chemphyschem ; 25(12): e202400074, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38517325

RESUMO

In the framework of the design, synthesis and testing of a library of copper complexes and nanostructured assemblies potentially endowed with antitumor and antiviral activity and useful for several applications, from drugs and related delivery systems to the development of biocidal nanomaterials, we present the detailed spectroscopic investigation of the molecular and electronic structure of copper-based coordination compounds and of a new conjugated system obtained by grafting Cu(I) complexes to gold nanorods. More in detail, the electronic and molecular structures of two Cu complexes and one AuNRs/Cu-complex adduct were investigated by X-ray photoelectron spectroscopy (XPS), synchrotron-induced XPS (SR-XPS) and near edge X-ray absorption spectroscopy (NEXAFS) in solid state, and the local structure around copper ion was assessed by X-ray absorption spectroscopy (XAS) both in solid state and water solution for the AuNRs/Cu-complex nanoparticles. The proposed multi-technique approach allowed to properly define the coordination geometry around the copper ion, as well as to ascertain the molecular structures of the coordination compounds, their stability and modifications upon interaction with gold nanoparticles, by comparing solid state and liquid phase data.

3.
Langmuir ; 39(19): 6837-6845, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37130382

RESUMO

This work aims at preparing and characterizing a versatile multifunctional platform enabling the immobilization of macromolecules on a titanium surface by robust covalent grafting. Functionalized titanium is widely used in the biomedical field to improve its properties. Despite its high biocompatibility and osteointegrability, titanium implants are not very stable in the long term due to the onset of inflammation and bacterial infections. The proposed method allows the superficial insertion of three different organic linkers to be used as anchors for the attachment of biopolymers or bioactive molecules. This strategy used green solvents and is a good alternative to the proposed classic methods that employ organic solvents. The uniformly modified surfaces were characterized by micro-Fourier transform infrared spectroscopy (micro-FTIR), X-ray Photoelectron spectroscopy (XPS) and Near-Edge X-ray Absorption Fine Structure (NEXAFS). The latter made it possible to assess the orientation of the linker molecules with respect to the titanium surface. To test the efficiency of the linkers, two polymers (alginate and 2-(dimethylamino)-ethyl methacrylate (PDMAEMA)), with the potential ability to increase biocompatibility, were covalently attached to the titanium surfaces. The obtained results are a good starting point for the realization of stable polymeric coatings permanently bonded to the surface that could be used to extend the life of biomedical implants.

4.
Int J Mol Sci ; 24(6)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36982977

RESUMO

A promising therapeutic strategy to delay and/or prevent the onset of neurodegenerative diseases (NDs) could be to restore neuroprotective pathways physiologically triggered by neurons against stress injury. Recently, we identified the accumulation of neuroglobin (NGB) in neuronal cells, induced by the 17ß-estradiol (E2)/estrogen receptor ß (ERß) axis, as a protective response that increases mitochondria functionality and prevents the activation of apoptosis, increasing neuron resilience against oxidative stress. Here, we would verify if resveratrol (Res), an ERß ligand, could reactivate NGB accumulation and its protective effects against oxidative stress in neuronal-derived cells (i.e., SH-SY5Y cells). Our results demonstrate that ERß/NGB is a novel pathway triggered by low Res concentrations that lead to rapid and persistent NGB accumulation in the cytosol and in mitochondria, where the protein contributes to reducing the apoptotic death induced by hydrogen peroxide (H2O2). Intriguingly, Res conjugation with gold nanoparticles increases the stilbene efficacy in enhancing neuron resilience against oxidative stress. As a whole, ERß/NGB axis regulation is a novel mechanism triggered by low concentration of Res to regulate, specifically, the neuronal cell resilience against oxidative stress reducing the triggering of the apoptotic cascade.


Assuntos
Nanopartículas Metálicas , Neuroblastoma , Humanos , Resveratrol/farmacologia , Globinas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptor beta de Estrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Ouro/farmacologia , Neuroglobina/farmacologia , Estresse Oxidativo , Apoptose , Neurônios/metabolismo
5.
Int J Mol Sci ; 24(3)2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36768470

RESUMO

Breast cancer is the first leading tumor in women in terms of incidence worldwide. Seventy percent of cases are estrogen receptor (ER) α-positive. In these malignancies, 17ß-estradiol (E2) via ERα increases the levels of neuroglobin (NGB), a compensatory protein that protects cancer cells from stress-induced apoptosis, including chemotherapeutic drug treatment. Our previous data indicate that resveratrol (RSV), a plant-derived polyphenol, prevents E2/ERα-induced NGB accumulation in this cellular context, making E2-dependent breast cancer cells more prone to apoptosis. Unfortunately, RSV is readily metabolized, thus preventing its effectiveness. Here, four different RSV analogs have been developed, and their effect on the ERα/NGB pathway has been compared with RSV conjugated with highly hydrophilic gold nanoparticles as prodrug to evaluate if RSV derivatives maintain the breast cancer cells' susceptibility to the chemotherapeutic drug paclitaxel as the original compound. Results demonstrate that RSV conjugation with gold nanoparticles increases RSV efficacy, with respect to RSV analogues, reducing NGB levels and enhancing the pro-apoptotic action of paclitaxel, even preventing the anti-apoptotic action exerted by E2 treatment on these cells. Overall, RSV conjugation with gold nanoparticles makes this complex a promising agent for medical application in breast cancer treatment.


Assuntos
Neoplasias da Mama , Nanopartículas Metálicas , Pró-Fármacos , Feminino , Humanos , Neuroglobina/farmacologia , Neoplasias da Mama/metabolismo , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Receptor alfa de Estrogênio/metabolismo , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Globinas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Ouro/farmacologia , Estradiol/farmacologia , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Linhagem Celular Tumoral , Apoptose , Estrogênios/farmacologia
6.
Inorg Chem ; 61(12): 4919-4937, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35285628

RESUMO

Bis(pyrazol-1-yl)- and bis(3,5-dimethylpyrazol-1-yl)-acetates were conjugated with the 2-hydroxyethylester and 2-aminoethylamide derivatives of the antineoplastic drug lonidamine to prepare Cu(I) and Cu(II) complexes that might act through synergistic mechanisms of action due to the presence of lonidamine and copper in the same chemical entity. Synchrotron radiation-based complementary techniques [X-ray photorlectron spectroscopy and near-edge X-ray absorption fine structure (NEXAFS)] were used to characterize the electronic and molecular structures of the complexes and the local structure around the copper ion (XAFS) in selected complexes. All complexes showed significant antitumor activity, proving to be more effective than the reference drug cisplatin in a panel of human tumor cell lines, and were able to overcome oxaliplatin and multidrug resistance. Noticeably, these Cu complexes appeared much more effective than cisplatin against 3D spheroids of pancreatic PSN-1 cancer cells; among these, PPh3-containing Cu(I) complex 15 appeared to be the most promising derivative. Mechanistic studies revealed that 15 induced cancer cell death by means of an apoptosis-alternative cell death.


Assuntos
Antineoplásicos , Complexos de Coordenação , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Cobre/química , Cobre/farmacologia , Cristalografia por Raios X , Humanos , Indazóis , Ligantes , Estrutura Molecular
7.
J Enzyme Inhib Med Chem ; 37(1): 1812-1820, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35758192

RESUMO

Several epidemiological studies suggest that a diet rich in fruit and vegetables reduces the incidence of neurodegenerative diseases. Resveratrol (Res) and its dimethylated metabolite, pterostibene (Ptb), have been largely studied for their neuroprotective action. The clinical use of Res is limited because of its rapid metabolism and its poor bioavailability. Ptb with two methoxy groups and one hydroxyl group has a good membrane permeability, metabolic stability and higher in vivo bioavailability in comparison with Res. The metabolism and pharmacokinetics of Ptb are still sparse, probably due to the lack of tools that allow following the Ptb destiny both in living cells and in vivo. In this contest, we propose two Ptb fluorescent derivatives where Ptb has been functionalised by benzofurazan and rhodamine-B-isothiocyanate, compounds 1 and 2, respectively. Here, we report the synthesis, the optical and structural characterisation of 1 and 2, and, their putative cytotoxicity in two different cell lines.


Assuntos
Corantes Fluorescentes , Estilbenos , Disponibilidade Biológica , Corantes Fluorescentes/farmacologia , Resveratrol/química , Resveratrol/farmacologia , Estilbenos/química , Estilbenos/farmacologia
8.
Int J Mol Sci ; 23(16)2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-36012662

RESUMO

Bis(pyrazol-1-yl)acetic acid (HC(pz)2COOH) and bis(3,5-dimethyl-pyrazol-1-yl)acetic acid (HC(pzMe2)2COOH) were converted into the methyl ester derivatives 1 (LOMe) and 2 (L2OMe), respectively, and were used for the preparation of Cu(I) and Cu(II) complexes 3-10. The copper(II) complexes were prepared by the reaction of CuCl2·2H2O or CuBr2 with ligands 1 and 2 in methanol solution. The copper(I) complexes were prepared by the reaction of Cu[(CH3CN)4]PF6 and 1,3,5-triaza-7-phosphaadamantane (PTA) or triphenylphosphine with LOMe and L2OMe in acetonitrile solution. Synchrotron radiation-based complementary techniques (XPS, NEXAFS, and XAS) were used to investigate the electronic and molecular structures of the complexes and the local structure around copper ions in selected Cu(I) and Cu(II) coordination compounds. All Cu(I) and Cu(II) complexes showed a significant in vitro antitumor activity, proving to be more effective than the reference drug cisplatin in a panel of human cancer cell lines, and were able to overcome cisplatin resistance. Noticeably, Cu complexes appeared much more effective than cisplatin in 3D spheroid cultures. Mechanistic studies revealed that the antitumor potential did not correlate with cellular accumulation but was consistent with intracellular targeting of PDI, ER stress, and paraptotic cell death induction.


Assuntos
Complexos de Coordenação , Cobre , Acetatos , Cisplatino , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Cobre/química , Cristalografia por Raios X , Ésteres/farmacologia , Humanos , Ligantes
9.
Int J Mol Sci ; 22(11)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34072888

RESUMO

Hybrid biomaterials allow for the improvement of the biological properties of materials and have been successfully used for implantology in medical applications. The covalent and selective functionalization of materials with bioactive peptides provides favorable results in tissue engineering by supporting cell attachment to the biomaterial through biochemical cues and interaction with membrane receptors. Since the functionalization with bioactive peptides may alter the chemical and physical properties of the biomaterials, in this study we characterized the biological responses of differently functionalized chitosan analogs. Chitosan analogs were produced through the reaction of GRGDSPK (RGD) or FRHRNRKGY (HVP) sequences, both carrying an aldehyde-terminal group, to chitosan. The bio-functionalized polysaccharides, pure or "diluted" with chitosan, were chemically characterized in depth and evaluated for their antimicrobial activities and biocompatibility toward human primary osteoblast cells. The results obtained indicate that the bio-functionalization of chitosan increases human-osteoblast adhesion (p < 0.005) and proliferation (p < 0.005) as compared with chitosan. Overall, the 1:1 mixture of HVP functionalized-chitosan:chitosan is the best compromise between preserving the antibacterial properties of the material and supporting osteoblast differentiation and calcium deposition (p < 0.005 vs. RGD). In conclusion, our results reported that a selected concentration of HVP supported the biomimetic potential of functionalized chitosan better than RGD and preserved the antibacterial properties of chitosan.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Transplante Ósseo/métodos , Quitosana/química , Osteogênese/efeitos dos fármacos , Engenharia Tecidual , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Regeneração Óssea/genética , Osso e Ossos/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Quitosana/análogos & derivados , Quitosana/síntese química , Quitosana/farmacologia , Durapatita/química , Durapatita/farmacologia , Humanos , Oligopeptídeos/síntese química , Oligopeptídeos/química , Osteoblastos/efeitos dos fármacos , Alicerces Teciduais/química
10.
Langmuir ; 35(50): 16593-16604, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31751514

RESUMO

Molecular self-assembly consists of the spontaneous aggregation of molecules into a well-defined structure guided by noncovalent bonds. The self-assembly strategy is ubiquitous in nature and recently has been proposed as a nature-mimetic strategy in polymer science and biomaterial engineering. In this context, we aim at designing and testing innovative but simple chemical strategies to efficiently modify surfaces by exploiting minor modifications in the bioactive molecule functionalities, for example, introducing cysteine (Cys) as a terminal residue in self-assembling peptides (SAPs). In this work, we report the attenuated total reflection-Fourier transform infrared spectroscopy, synchrotron radiation-induced X-ray photoelectron spectroscopy, near-edge X-ray absorption fine structure spectroscopy, and time-of-flight secondary ion mass spectrometry investigation of self-assembled layers of oligopeptides anchored onto gold surfaces through cysteine residues, opportunely inserted in an SAP (EAK16-II) main chain in three different positions: at the amine end group, at the carboxyl end group, and at both terminal groups (i.e., a bidentate SAP). This study, which allowed us to individuate in the bidentate SAP the best candidate for the controlled production of ordered SAP layers on the gold substrate surface, is envisaged to open wide perspectives for efficient chemical modification of surfaces with biomolecules, leading to obtaining innovative bioactive materials for applications in the field of tissue engineering.


Assuntos
Cisteína/química , Ouro/química , Peptídeos/química , Propriedades de Superfície
11.
Inorg Chem ; 58(8): 4935-4944, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30920816

RESUMO

Iron is an essential nutrient for nearly all forms of life, although scarcely available due to its poor solubility in nature and complex formation in higher eukaryotes. Microorganisms have evolved a vast array of strategies to acquire iron, the most common being the production of high-affinity iron chelators, termed siderophores. The opportunistic bacterial pathogen Pseudomonas aeruginosa synthesizes and secretes two siderophores, pyoverdine (PVD) and pyochelin (PCH), characterized by very different structural and functional properties. Due to its chemical similarity with Fe(III), Ga(III) interferes with several iron-dependent biological pathways. Both PVD and PCH bind Fe(III) and Ga(III). However, while the Ga-PCH complex is more effective than Ga(III) in inhibiting P. aeruginosa growth, PVD acts as a Ga(III) scavenger and protects bacteria from Ga(III) toxicity. To gain more insight into the different outcomes of the biological paths observed for the Fe(III) and Ga(III)-siderophore complexes, better knowledge is needed of their coordination geometries that directly influence the metal complexes chemical stability. The valence state and coordination geometry of the Ga-PCH and Fe-PCH complexes has recently been investigated in detail; as for PVD complexes, several NMR structural studies of Ga(III)-PVD are reported in the literature, using Ga(III) as a diamagnetic isosteric substitute for Fe(III). In this work, we applied up-to-date spectroscopic techniques as synchrotron-radiation-induced X-ray photoelectron spectroscopy (SR-XPS) and X-ray absorption fine structure (XAFS) spectroscopy coupled with molecular modeling to describe the electronic structure and coordination chemistry of Fe and Ga coordinative sites in PVD metal complexes. These techniques allowed us to unambiguously determine the oxidation state of the coordinative ions and to gather interesting information about the similarities and differences between the two coordination compounds as induced by the different metal.

12.
Langmuir ; 30(5): 1336-42, 2014 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-24443819

RESUMO

Despite the relevance of carbohydrates as cues in eliciting specific biological responses, the covalent surface modification of collagen-based matrices with small carbohydrate epitopes has been scarcely investigated. We report thereby the development of an efficient procedure for the chemoselective neoglycosylation of collagen matrices (patches) via a thiol-ene approach, between alkene-derived monosaccharides and the thiol-functionalized material surface. Synchrotron radiation-induced X-ray photoelectron spectroscopy (SR-XPS), Fourier transform-infrared (FT-IR), and enzyme-linked lectin assay (ELLA) confirmed the effectiveness of the collagen neoglycosylation. Preliminary biological evaluation in osteoarthritic models is reported. The proposed methodology can be extended to any thiolated surface for the development of smart biomaterials for innovative approaches in regenerative medicine.


Assuntos
Materiais Biocompatíveis/química , Carboidratos/química , Química Click , Colágeno/química , Compostos de Sulfidrila/química , Animais , Sequência de Carboidratos , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Glicosilação , Masculino , Estrutura Molecular , Osteoartrite/terapia , Espectroscopia Fotoeletrônica , Ratos , Ratos Wistar , Espectroscopia de Infravermelho com Transformada de Fourier
13.
Polymers (Basel) ; 16(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38674954

RESUMO

Nowadays, due to water pollution, more and more living beings are exposed to dangerous compounds, which can lead to them contracting diseases. The removal of contaminants (including heavy metals) from water is, therefore, a necessary aspect to guarantee the well-being of living beings. Among the most used techniques, the employment of adsorbent materials is certainly advantageous, as they are easy to synthesize and are cheap. In this work, poly(ethylene glycol) diacrylate (PEGDA) hydrogels doped with silver nanoparticles (AgNPs) for removing Hg(II) ions from water are presented. AgNPs were embedded in PEGDA-based matrices by using a photo-polymerizable solution. By exploiting a custom-made 3D printer, the filters were synthesized. The kinetics of interaction was studied, revealing that the adsorption equilibrium is achieved in 8 h. Subsequently, the adsorption isotherms of PEGDA doped with AgNPs towards Hg(II) ions were studied at different temperatures (4 °C, 25 °C, and 50 °C). In all cases, the best isotherm model was the Langmuir one (revealing that the chemisorption is the driving process and the most favorable one), with maximum adsorption capacities equal to 0.55, 0.57, and 0.61 mg/g, respectively. Finally, the removal efficiency was evaluated for the three temperatures, obtaining for 4 °C, 25 °C, and 50 °C the values 94%, 94%, and 86%, respectively.

14.
Heliyon ; 10(12): e32718, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39183891

RESUMO

Nuclear-grade graphite is a high-efficiency material, widely used for vacuum applications in nuclear reactors and accelerators as targets facing particle beams. In these contexts, graphite is often exposed to extreme thermal stresses altering its physical and chemical properties. The thermal-induced release of volatile contaminants from targets and the damage of structural components are critical issues that can affect the safety and operation efficiency of beamline facilities. Here, we provide for the first time a detailed picture of the chemical and morphological changes occurring in a nuclear-grade graphite target, obtained through Electrical Discharge Machining (EDM), when exposed in vacuum to high temperatures. The radial temperature gradient induced by the impact of a pulsed energetic (MeV- GeV range) focused particle beams was reproduced by cyclically heating, in the 1300-1800 K temperature range, a disc-shaped graphite target in a vacuum setup. An accurate surface and in-depth chemical analysis of the graphite target was obtained thanks to the high sensitivity (ppm/ppb) of the Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) technique. The chemical maps clearly show the presence of several metal oxides and impurities in the surface and subsurface regions of the untreated sample. Such contaminants were removed because of the thermal treatment in vacuum more or less efficiently, as demonstrated by Thermogravimetric analysis (TGA), X-ray Photoelectron Spectroscopy (XPS), and ToF-SIMS. However, Raman spectroscopy and SEM-EDS revealed that the high-temperature treatment induces a decrease in the crystallite size of the graphite as well as changes in the target surface porosity with the appearance of microvoids, leading the graphite target to be more prone to the breakage.

15.
ACS Appl Nano Mater ; 7(2): 2401-2413, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38298253

RESUMO

Nanocellulose constitutes a sustainable and biobased solution both as an efficient sorbent material for water treatment and as support for other inorganic nanomaterials with sorbent properties. Herein, we report the synthesis of a nanocomposite by deposition of in situ-generated silver nanoparticles (AgNPs) onto TEMPO-oxidized cellulose nanofibers (TOCNFs). Following an in-depth analytical investigation, we unveil for the first time the key role of AgNPs in enhancing the adsorption efficiency of TOCNF toward Cd2+ ions, chosen as model heavy metal contaminants. The obtained nanocomposite shows a value of Cd2+ sorption capacity at equilibrium from 150 mg L-1 ion aqueous solutions of ∼116 mg g-1 against the value of 78 mg g-1 measured for TOCNF alone. A combination of field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray (EDX), and X-ray photoelectron spectroscopy (XPS) analyses suggests that Cd2+ ions are mainly adsorbed in the neighborhood of AgNPs. However, XPS characterization allows us to conclude that the role of AgNPs relies on increasing the exposure of carboxylic groups with respect to the original TOCNF, suggesting that these groups are still responsible for absorption. In fact, X-ray absorption spectroscopy (XAS) analysis of the Cd-K edge excludes a direct interaction between Ag0 and Cd2+, supporting the XPS results and confirming the coordination of the latter with carboxyl groups.

16.
J Biomed Mater Res A ; 112(11): 1960-1974, 2024 11.
Artigo em Inglês | MEDLINE | ID: mdl-38783716

RESUMO

Population aging, reduced economic capacity, and neglecting the treatments for oral pathologies, are the main causal factors for about 3 billion individuals who are suffering from partial/total edentulism or alveolar bone resorption: thus, the demand for dental implants is increasingly growing. To achieve a good prognosis for implant-supported restorations, adequate peri-implant bone volume is mandatory. The Guided Bone Regeneration (GBR) technique is one of the most applied methods for alveolar bone reconstruction and treatment of peri-implant bone deficiencies. This technique involves the use of different types of membranes in association with some bone substitutes (autologous, homologous, or heterologous). However, time for bone regeneration is often too long and the bone quality is not simply predictable. This study aims at engineering and evaluating the efficacy of modified barrier membranes, enhancing their bioactivity for improved alveolar bone tissue regeneration. We investigated membranes functionalized with chitosan (CS) and chitosan combined with the peptide GBMP1α (CS + GBMP1α), to improve bone growth. OsseoGuard® membranes, derived from bovine Achilles tendon type I collagen crosslinked with formaldehyde, were modified using CS and CS + GBMP1α. The functionalization, carried out with 1-ethyl-3-(3 dimethylaminopropyl)carbodiimide and sulfo-N-Hydroxysuccinimide (EDC/sulfo-NHS), was assessed through FT-IR and XPS analyses. Biological assays were performed by directly seeding human osteoblasts onto the materials to assess cell proliferation, mineralization, gene expression of Secreted Phosphoprotein 1 (SPP1) and Runt-Related Transcription Factor 2 (Runx2), and antibacterial properties. Both CS and CS + GBMP1α functionalizations significantly enhanced human osteoblast proliferation, mineralization, gene expression, and antibacterial activity compared to commercial membranes. The CS + GBMP1α functionalization exhibited superior outcomes in all biological assays. Mechanical tests showed no significant alterations of membrane biomechanical properties post-functionalization. The engineered membranes, especially those functionalized with CS + GBMP1α, are suitable for GBR applications thanks to their ability to enhance osteoblast activity and promote bone tissue regeneration. These findings suggest a potential advancement in the treatment of oral cavity problems requiring bone regeneration.


Assuntos
Quitosana , Membranas Artificiais , Humanos , Animais , Quitosana/química , Bovinos , Osteoblastos/metabolismo , Osteoblastos/citologia , Regeneração Óssea/efeitos dos fármacos , Procedimentos Cirúrgicos Bucais , Cirurgia Bucal/métodos
17.
J Med Chem ; 67(11): 9662-9685, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38831692

RESUMO

The new ligand L2Ad, obtained by conjugating the bifunctional species bis(3,5-dimethylpyrazol-1-yl)-acetate and the drug amantadine, was used as a chelator for the synthesis of new Cu complexes 1-5. Their structures were investigated by synchrotron radiation-induced X-ray photoelectron spectroscopy (SR-XPS), near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, and by combining X-ray absorption fine structure (XAFS) spectroscopy techniques and DFT modeling. The structure of complex 3 was determined by single-crystal X-ray diffraction analysis. Tested on U87, T98, and U251 glioma cells, Cu(II) complex 3 and Cu(I) complex 5 decreased cell viability with IC50 values significantly lower than cisplatin, affecting cell growth, proliferation, and death. Their effects were prevented by treatment with the Cu chelator tetrathiomolybdate, suggesting the involvement of copper in their cytotoxic activity. Both complexes were able to increase ROS production, leading to DNA damage and death. Interestingly, nontoxic doses of 3 or 5 enhanced the chemosensitivity to Temozolomide.


Assuntos
Adamantano , Antineoplásicos , Complexos de Coordenação , Cobre , Glioblastoma , Humanos , Cobre/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Glioblastoma/metabolismo , Ligantes , Adamantano/farmacologia , Adamantano/química , Adamantano/síntese química , Adamantano/análogos & derivados , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Pirazóis/química , Pirazóis/farmacologia , Pirazóis/síntese química , Sobrevivência Celular/efeitos dos fármacos , Teoria da Densidade Funcional , Ensaios de Seleção de Medicamentos Antitumorais , Espécies Reativas de Oxigênio/metabolismo , Estrutura Molecular , Quelantes/química , Quelantes/farmacologia , Quelantes/síntese química , Relação Estrutura-Atividade , Acetatos/química , Acetatos/farmacologia , Acetatos/síntese química
18.
Sci Total Environ ; 898: 165564, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37467998

RESUMO

Given the widespread presence of plastics, especially in micro- and nanoscale sizes, in freshwater systems, it is crucial to identify a suitable model organism for assessing the potential toxic and teratogenic effects of exposure to plastic particles. Until now, the early life stage of freshwater organisms and the regeneration capacity in relation to plastic particles exposure is a still poorly investigated topic. In this study, we examine the teratogenic effect on diatom Cocconeis placentula and cnidarian Hydra vulgaris under controlled exposure conditions of poly(styrene-co-methyl methacrylate) (P(S-co-MMA)) particles. Significant effects were observed at the lowest concentrations (0.1 µg/L). A significant increase in the teratological frequency in C. placentula and a significant decrease in the regeneration rate in H. vulgaris were found at the lowest concentration. The delay in hydra regeneration impaired the feeding capacity and tentacles reactivity at 96 h of exposure. No effects on diatom growth were observed upon exposure to P(S-co-MMA) particles (0.1, 1, 100, 10,000 µg/L) for 28 days and these findings agree with other studies investigating algal growth. The application of the Teratogenic Risk Index, modified for diatoms, highlighted a moderate risk for the lowest concentration evaluating C. placentula and low risk at the lowest and the highest concentrations considering H. vulgaris. This study suggests the importance of testing organisms belonging to different trophic levels as diverse teratogenic effects can be found and the need to evaluate environmentally relevant concentrations of plastic particles.


Assuntos
Cnidários , Hydra , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/toxicidade , Organismos Aquáticos , Água Doce , Plásticos/toxicidade
19.
Polymers (Basel) ; 15(15)2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37571138

RESUMO

Ecosystems around the world are experiencing a major environmental impact from microplastic particles (MPs 0.1 µm-1 mm). Water, sediments, and aquatic biota show the widespread presence of this pollutant. However, MPs are rarely used in laboratory studies as they are scarcely available for purchase or expensive, especially if one wishes to trace the particle with a dye or fluorescent. Furthermore, existing preparation techniques have limited application in biological studies. In this work, we propose a new, easy, and cheap way to prepare fluorescent MPs. The protocol is based on the osmosis method in order to obtain spherical polymeric particles of P(S-co-MMA), with 0.7-9 micron diameter, made fluorescent because dye-doped with rhodamine B isothiocyanate (RITC) or fluorescein isothiocyanate (FITC). The dye loading was studied and optimized, and the MPs-dye conjugates were characterized by UV-vis FTIR and XPS spectrometry and scanning electron microscopy (SEM). Furthermore, preliminary tests on aquatic organisms demonstrated the possible use of these fluorescent MPs in bioimaging studies, showing their absorption/adsorption by duckweeds (Lemna minuta) and insect larvae (Cataclysta lemnata).

20.
Nanoscale Adv ; 5(15): 3924-3933, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37496614

RESUMO

Gold nanorods stabilized by binary ligand mixtures of cetyltrimethylammonium bromide (CTAB, primary ligand) and ascorbic acid or hydroquinone were investigated by complementary synchrotron radiation-induced spectroscopies and microscopies, with the aim to find evidence of the influence of the secondary ligand molecular and chemical structure on the nanorod shapes and size ratios. Indeed, as it is well known that the CTAB interaction with Ag(i) ions at the NR surface plays a key role in directing the anisotropic growth of nanorods, the possibility to finely control the NR shape and dimension by opportunely selecting the secondary ligands opens new perspectives in the design and synthesis of anisotropic nanoparticles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA