Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Rapid Commun Mass Spectrom ; 38(5): e9690, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38355883

RESUMO

RATIONALE: Hydrogen/deuterium exchange mass spectrometry (HDX-MS) can provide precise analysis of a protein's conformational dynamics across varied states, such as heat-denatured versus native protein structures, localizing regions that are specifically affected by such conditional changes. Maximizing protein sequence coverage provides high confidence that regions of interest were located by HDX-MS, but one challenge for complete sequence coverage is N-glycosylation sites. The deuteration of peptides post-translationally modified by asparagine-bound glycans (glycopeptides) has not always been identified in previous reports of HDX-MS analyses, causing significant sequence coverage gaps in heavily glycosylated proteins and uncertainty in structural dynamics in many regions throughout a glycoprotein. METHODS: We detected deuterated glycopeptides with a Tribrid Orbitrap Eclipse mass spectrometer performing data-dependent acquisition. An MS scan was used to identify precursor ions; if high-energy collision-induced dissociation MS/MS of the precursor indicated oxonium ions diagnostic for complex glycans, then electron transfer low-energy collision-induced dissociation MS/MS scans of the precursor identified the modified asparagine residue and the glycan's mass. As in traditional HDX-MS, the identified glycopeptides were then analyzed at the MS level in samples labeled with D2 O. RESULTS: We report HDX-MS analysis of the SARS-CoV-2 spike protein ectodomain in its trimeric prefusion form, which has 22 predicted N-glycosylation sites per monomer, with and without heat treatment. We identified glycopeptides and calculated their average isotopic mass shifts from deuteration. Inclusion of the deuterated glycopeptides increased sequence coverage of spike ectodomain from 76% to 84%, demonstrated that glycopeptides had been deuterated, and improved confidence in results localizing structural rearrangements. CONCLUSION: Inclusion of deuterated glycopeptides improves the analysis of the conformational dynamics of glycoproteins such as viral surface antigens and cellular receptors.


Assuntos
COVID-19 , Glicopeptídeos , Humanos , Glicopeptídeos/química , Glicoproteína da Espícula de Coronavírus , Espectrometria de Massas em Tandem/métodos , Deutério , SARS-CoV-2 , Asparagina , Glicoproteínas/química , Polissacarídeos , Íons
2.
Anal Bioanal Chem ; 415(19): 4779-4793, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37354227

RESUMO

N-Glycosylation plays an important role in the structure and function of membrane and secreted proteins. Viral proteins used in cell entry are often extensively glycosylated to assist in protein folding, provide stability, and shield the virus from immune recognition by its host (described as a "glycan shield"). The SARS-CoV-2 spike protein (S) is a prime example, having 22 potential sites of N-glycosylation per protein protomer, as predicted from the primary sequence. In this report, we conducted mass spectrometric analysis of the N-glycosylation profiles of recombinant spike proteins derived from four common SARS-CoV-2 variants classified as Variant of Concern, including Alpha, Beta, Gamma, and Delta along with D614G variant spike as a control. Our data reveal that the amino acid substitutions and deletions between variants impact the abundance and type of glycans on glycosylation sites of the spike protein. Some of the N-glycosylation sequons in S show differences between SARS-CoV-2 variants in the distribution of glycan forms. In comparison with our previously reported site-specific glycan analysis on the S-D614G and its ancestral protein, glycan types on later variants showed high similarity on the site-specific glycan content to S-D614G. Additionally, we applied multiple digestion methods on each sample, and confirmed the results for individual glycosylation sites from different experiment conditions to improve the identification and quantification of glycopeptides. Detailed site-specific glycan analysis of a wide variety of SARS-CoV-2 variants provides useful information toward the understanding of the role of protein glycosylation on viral protein structure and function and development of effective vaccines and therapeutics.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Glicosilação , Glicoproteína da Espícula de Coronavírus/química , Polissacarídeos/química
3.
Anal Chem ; 92(21): 14730-14739, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33064451

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to a global pandemic of coronavirus disease 2019 (COVID-19). The spike protein expressed on the surface of this virus is highly glycosylated and plays an essential role during the process of infection. We conducted a comprehensive mass spectrometric analysis of the N-glycosylation profiles of the SARS-CoV-2 spike proteins using signature ions-triggered electron-transfer/higher-energy collision dissociation (EThcD) mass spectrometry. The patterns of N-glycosylation within the recombinant ectodomain and S1 subunit of the SARS-CoV-2 spike protein were characterized using this approach. Significant variations were observed in the distribution of glycan types as well as the specific individual glycans on the modification sites of the ectodomain and subunit proteins. The relative abundance of sialylated glycans in the S1 subunit compared to the full-length protein could indicate differences in the global structure and function of these two species. In addition, we compared N-glycan profiles of the recombinant spike proteins produced from different expression systems, including human embryonic kidney (HEK 293) cells and Spodoptera frugiperda (SF9) insect cells. These results provide useful information for the study of the interactions of SARS-CoV-2 viral proteins and for the development of effective vaccines and therapeutics.


Assuntos
Betacoronavirus/química , Polissacarídeos/análise , Glicoproteína da Espícula de Coronavírus/química , Animais , Glicosilação , Células HEK293 , Humanos , Espectrometria de Massas/métodos , Polissacarídeos/química , SARS-CoV-2 , Spodoptera/química
4.
Anal Bioanal Chem ; 411(21): 5489-5497, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31172236

RESUMO

Clostridium botulinum produces botulinum neurotoxins (BoNTs) that are one of the most poisonous substances. In order to respond to public health emergencies, there is a need to develop sensitive and specific methods for detecting botulinum toxin in various clinical matrices. Our laboratory has developed a mass spectrometry-based Endopep-MS assay that is able to rapidly detect and differentiate BoNT serotypes A-G by immunoaffinity capture of toxins and detection of unique cleavage products of peptide substrates. To improve the sensitivity of the Endopep-MS assay for the detection of BoNT serotype G, we report here the optimization of synthetic peptide substrates through systematic substitution, deletion, and incorporation of unnatural amino acids. Our data show that the resulting optimized peptides produced a significant improvement (two orders of magnitude) in assay sensitivity and allowed the detection of 0.01 mouseLD50 toxin present in buffer solution.


Assuntos
Toxinas Botulínicas/análise , Peptídeos/química , Humanos , Limite de Detecção
5.
Anal Bioanal Chem ; 409(20): 4779-4786, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28573317

RESUMO

Rapid and sensitive detection of botulinum neurotoxins (BoNTs), which cause botulism, is essential in a public health emergency or bioterrorism event. We have previously developed a mass spectrometry (MS)-based functional method, Endopep-MS assay, for the fast detection and differentiation of all BoNT serotypes by affinity enriching the toxin and detecting the serotype-specific cleavage products of peptide substrates derived from the in vivo targets. To improve the performance of the Endopep-MS assay, we report here the further optimization of the peptide substrate for the detection of serotype A botulinum neurotoxins. An increased substrate cleavage was achieved by extending the original peptide N-terminus with optimized amino acid sequence, increasing the detection sensitivity of the method. In addition, the resistance of the substrate to nonspecific hydrolysis was dramatically improved by selectively substituting amino acids at the scissile bond and various other positions of the extended peptide. Moreover, incorporating the N-terminal hydrophobic residues dramatically improved the relative intensity of the cleavage products in the mass spectra. This allowed easy detection of the cleavage products, further enhancing the performance of the assay. The limit of detection for spiked serum sample was enhanced from 0.5 to 0.1 mouseLD50 and from 0.5 to 0.2 mouseLD50 for spiked stool. Graphical abstract Mass spectra of optimized and old peptide substrates with BoNT/A.


Assuntos
Toxinas Botulínicas/análise , Peptídeos/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Limite de Detecção , Camundongos
6.
Anal Chem ; 88(13): 6867-72, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27264550

RESUMO

Ricin is a highly toxic protein which causes cell death by blocking protein synthesis and is considered a potential bioterrorism agent. Rapid and sensitive detection of ricin toxin in various types of sample matrices is needed as an emergency requirement for public health and antibioterrorism response. An in vitro MALDI TOF MS-based activity assay that detects ricin mediated depurination of synthetic substrates was improved through optimization of the substrate, reaction conditions, and sample preparation. In this method, the ricin is captured by a specific polycolonal antibody followed by hydrolysis reaction. The ricin activity is determined by detecting the unique cleavage product of synthetic oligomer substrates. The detection of a depurinated substrate was enhanced by using a more efficient RNA substrate and optimizing buffer components, pH, and reaction temperature. In addition, the factors involved in mass spectrometry analysis, such as MALDI matrix, plate, and sample preparation, were also investigated to improve the ionization of the depurinated product and assay reproducibility. With optimized parameters, the limit of detection of 0.2 ng/mL of ricin spiked in buffer and milk was accomplished, representing more than 2 orders of magnitude enhancement in assay sensitivity. Improving assay's ruggeddness or reproducibility also made it possible to quantitatively detect active ricin with 3 orders of magnitude dynamic range.

7.
Anal Chem ; 87(7): 3911-7, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25731972

RESUMO

A unique strain of Clostridium botulinum (IBCA10-7060) was recently discovered which produces two toxins: botulinum neurotoxin (BoNT) serotype B and a novel BoNT reported as serotype H. Previous molecular assessment showed that the light chain (LC) of the novel BoNT most resembled the bont of the light chain of known subtype F5, while the C-terminus of the heavy chain (HC) most resembled the binding domain of serotype A. We evaluated the functionality of both toxins produced in culture by first incorporating an immunoaffinity step using monoclonal antibodies to purify BoNT from culture supernatants and tested each immune-captured neurotoxin with full-length substrates vesicle-associated membrane protein 2 (VAMP-2), synaptosomal-associated protein 25 (SNAP-25), syntaxin, and shortened peptides representing the substrates. The BoNT/B produced by this strain behaved as a typical BoNT/B, having immunoaffinity for anti-B monoclonal antibodies and cleaving both full length VAMP-2 and a peptide based on the sequence of VAMP-2 in the expected location. As expected, there was no activity toward SNAP-25 or syntaxin. The novel BoNT demonstrated immunoaffinity for anti-A monoclonal antibodies but did not cleave SNAP-25 as expected for BoNT/A. Instead, the novel BoNT cleaved VAMP-2 and VAMP-2-based peptides in the same location as BoNT/F5. This is the first discovery of a single botulinum neurotoxin with BoNT/A antigenicity and BoNT/F light chain function. This work suggests that the newly reported serotype H may actually be a hybrid of previously known BoNT serotype A and serotype F, specifically subtype F5.


Assuntos
Toxinas Botulínicas Tipo A/metabolismo , Toxinas Botulínicas/metabolismo , Clostridium botulinum/química , Toxinas Botulínicas/química , Toxinas Botulínicas Tipo A/química , Cromatografia Líquida , Clostridium botulinum/metabolismo , Espectrometria de Massas
8.
BMC Microbiol ; 15: 227, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26494251

RESUMO

BACKGROUND: The disease botulism is caused by intoxication with botulinum neurotoxins (BoNTs), extremely toxic proteins which cause paralysis. This neurotoxin is produced by some members of the Clostridium botulinum and closely related species, and is produced as a protein complex consisting of the neurotoxin and neurotoxin-associated proteins (NAPs). There are seven known serotypes of BoNT, A-G, and the composition of the NAPs can differ between these serotypes. It was previously published that the BoNT/G complex consisted of BoNT/G, nontoxic-nonhemagglutinin (NTNH), Hemagglutinin 70 (HA-70), and HA-17, but that HA-33, a component of the protein complex of other serotypes of BoNT, was not found. METHODS: Components of the BoNT/G complex were first separated by SDS-PAGE, and bands corresponding to components of the complex were digested and analyzed by LC-MS/MS. RESULTS: Gel bands were identified with sequence coverages of 91% for BoNT/G, 91% for NTNH, 89% for HA-70, and 88% for HA-17. Notably, one gel band was also clearly identified as HA-33 with 93% sequence coverage. CONCLUSIONS: The BoNT/G complex consists of BoNT/G, NTNH, HA-70, HA-17, and HA-33. These proteins form the progenitor form of BoNT/G, similar to all other HA positive progenitor toxin complexes.


Assuntos
Toxinas Botulínicas/análise , Toxinas Botulínicas/química , Toxinas Botulínicas/metabolismo , Clostridium botulinum/metabolismo , Cromatografia Líquida , Eletroforese em Gel de Poliacrilamida , Espectrometria de Massas em Tandem
9.
Anal Biochem ; 468: 15-21, 2015 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-25232998

RESUMO

Botulinum neurotoxins (BoNTs) produced by Clostridium botulinum are the most poisonous substances known to humankind. It is essential to have a simple, quick, and sensitive method for the detection and quantification of botulinum toxin in various media, including complex biological matrices. Our laboratory has developed a mass spectrometry-based Endopep-MS assay that is able to rapidly detect and differentiate all types of BoNTs by extracting the toxin with specific antibodies and detecting the unique cleavage products of peptide substrates. Botulinum neurotoxin type E (BoNT/E) is a member of a family of seven distinctive BoNT serotypes (A-G) and is the causative agent of botulism in both humans and animals. To improve the sensitivity of the Endopep-MS assay, we report here the development of novel peptide substrates for the detection of BoNT/E activity through systematic and comprehensive approaches. Our data demonstrate that several optimal peptides could accomplish 500-fold improvement in sensitivity compared with the current substrate for the detection of both not-trypsin-activated and trypsin-activated BoNT/E toxin complexes. A limit of detection of 0.1 mouse LD50/ml was achieved using the novel peptide substrate in the assay to detect not-trypsin-activated BoNT/E complex spiked in serum, stool, and food samples.


Assuntos
Toxinas Botulínicas/análise , Neurotoxinas/análise , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Bioensaio/métodos , Toxinas Botulínicas/metabolismo , Toxinas Botulínicas/toxicidade , Humanos , Dose Letal Mediana , Limite de Detecção , Espectrometria de Massas/métodos , Espectrometria de Massas/estatística & dados numéricos , Camundongos , Neurotoxinas/toxicidade , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Tripsina/metabolismo
10.
Bioorg Med Chem ; 23(13): 3667-73, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25913863

RESUMO

It is essential to have a simple, quick and sensitive method for the detection and quantification of botulinum neurotoxins, the most toxic substances and the causative agents of botulism. Type C botulinum neurotoxin (BoNT/C) represents one of the seven members of distinctive BoNT serotypes (A to G) that cause botulism in animals and avians. Here we report the development of optimized peptide substrates for improving the detection of BoNT/C and /CD mosaic toxins using an Endopep-MS assay, a mass spectrometry-based method that is able to rapidly and sensitively detect and differentiate all types of BoNTs by extracting the toxin with specific antibodies and detecting the unique cleavage products of peptide substrates. Based on the sequence of a short SNAP-25 peptide, we conducted optimization through a comprehensive process including length determination, terminal modification, single and multiple amino acid residue substitution, and incorporation of unnatural amino acid residues. Our data demonstrate that an optimal peptide provides a more than 200-fold improvement over the substrate currently used in the Endopep-MS assay for the detection of BoNT/C1 and /CD mosaic. Using the new substrate in a four-hour cleavage reaction, the limit of detection for the BoNT/C1 complex spiked in buffer, serum and milk samples was determined to be 0.5, 0.5 and 1mouseLD50/mL, respectively, representing a similar or higher sensitivity than that obtained by traditional mouse bioassay.


Assuntos
Anticorpos Monoclonais/química , Bioensaio , Toxinas Botulínicas/sangue , Peptídeos/química , Sequência de Aminoácidos , Animais , Sítios de Ligação de Anticorpos , Clostridium botulinum/química , Humanos , Limite de Detecção , Espectrometria de Massas , Camundongos , Dados de Sequência Molecular , Peptídeos/síntese química , Ligação Proteica , Proteólise
11.
Biochim Biophys Acta ; 1834(12): 2722-8, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24096023

RESUMO

Clostridium botulinum neurotoxins (BoNTs) cause the life-threatening disease botulism through the inhibition of neurotransmitter release by cleaving essential SNARE proteins. There are seven serologically distinctive types of BoNTs and many subtypes within a serotype have been identified. BoNT/A5 is a recently discovered subtype of type A botulinum neurotoxin which possesses a very high degree of sequence similarity and identity to the well-studied A1 subtype. In the present study, we examined the endopeptidase activity of these two BoNT/A subtypes and our results revealed significant differences in substrate binding and cleavage efficiency between subtype A5 and A1. Distinctive hydrolysis efficiency was observed between the two toxins during cleavage of the native substrate SNAP-25 versus a shortened peptide mimic. N-terminal truncation studies demonstrated that a key region of the SNAP-25, including the amino acid residues at 151 through 154 located in the remote binding region of the substrate, contributed to the differential catalytic properties between A1 and A5. Elevated binding affinity of the peptide substrate resulted from including these important residues and enhanced BoNT/A5's hydrolysis efficiency. In addition, mutations of these amino acid residues affect the proteolytic performance of the two toxins in different ways. This study provides a better understanding of the biological activity of these toxins, their performance characteristics in the Endopep-MS assay to detect BoNT in clinical samples and foods, and is useful for the development of peptide substrates.


Assuntos
Toxinas Botulínicas Tipo A/química , Clostridium botulinum/enzimologia , Proteína 25 Associada a Sinaptossoma/química , Toxinas Botulínicas Tipo A/genética , Catálise , Hidrólise , Mutação , Ligação Proteica , Proteína 25 Associada a Sinaptossoma/genética
12.
Anal Chem ; 86(7): 3254-62, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24605815

RESUMO

Botulinum neurotoxins (BoNTs) are produced by various species of clostridia and are potent neurotoxins which cause the disease botulism, by cleaving proteins needed for successful nerve transmission. There are currently seven confirmed serotypes of BoNTs, labeled A-G, and toxin-producing clostridia typically only produce one serotype of BoNT. There are a few strains (bivalent strains) which are known to produce more than one serotype of BoNT, producing either both BoNT/A and /B, BoNT/A and /F, or BoNT/B and /F, designated as Ab, Ba, Af, or Bf. Recently, it was reported that Clostridium botulinum strain Af84 has three neurotoxin gene clusters: bont/A2, bont/F4, and bont/F5. This was the first report of a clostridial organism containing more than two neurotoxin gene clusters. Using a mass spectrometry based proteomics approach, we report here that all three neurotoxins, BoNT/A2, /F4, and /F5, are produced by C. botulinum Af84. Label free MS(E) quantification of the three toxins indicated that toxin composition is 88% BoNT/A2, 1% BoNT/F4, and 11% BoNT/F5. The enzymatic activity of all three neurotoxins was assessed by examining the enzymatic activity of the neurotoxins upon peptide substrates, which mimic the toxins' natural targets, and monitoring cleavage of the substrates by mass spectrometry. We determined that all three neurotoxins are enzymatically active. This is the first report of three enzymatically active neurotoxins produced in a single strain of Clostridium botulinum.


Assuntos
Toxinas Botulínicas/farmacologia , Enzimas/metabolismo , Neurotoxinas/farmacologia , Sequência de Aminoácidos , Toxinas Botulínicas/química , Toxinas Botulínicas/classificação , Espectrometria de Massas , Dados de Sequência Molecular , Neurotoxinas/química , Neurotoxinas/classificação , Isoformas de Proteínas/química , Isoformas de Proteínas/classificação , Isoformas de Proteínas/farmacologia , Proteômica , Homologia de Sequência de Aminoácidos
13.
Anal Chem ; 86(21): 10847-54, 2014 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-25285509

RESUMO

In this publication, we report on the development of a quantitative enzymatic method for the detection of four botulinum neurotoxin (BoNT) serotypes responsible for human botulism by MALDI-TOF mass spectrometry. Factors that might affect the linearity and dynamic range for detection of BoNT cleavage products were initially examined, including the amount of peptide substrate and internal standard, the timing of cleavage reaction, and the components in the reaction solution. It was found that a long incubation time produced sensitive results, but was not capable of determining higher toxin concentrations, whereas a short incubation time was less sensitive so that lower toxin concentrations were not detected. In order to overcome these limitations, a two-stage analysis strategy was applied. The first stage analysis involved a short incubation period (e.g., 30 min). If no toxin was detected at this stage, the cleavage reaction was allowed to continue and the samples were analyzed at a second time point (4 h), so that toxin levels lower than 1 mouse LD50 or 55 attomoles per milliliter (55 amol/mL) could be quantified. By combining the results from two-stage quantification, 4 or 5 orders of magnitude in dynamic range were achieved for the detection of the serotypes of BoNT/A, BoNT/B, BoNT/E, or BoNT/F. The effect of multiplexing the assay by mixing substrates for different BoNT serotypes into a single reaction was also investigated in order to reduce the numbers of the cleavage reactions and save valuable clinical samples.


Assuntos
Toxinas Botulínicas/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Toxinas Botulínicas/classificação
14.
ACS Infect Dis ; 10(6): 2032-2046, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38728322

RESUMO

SARS-CoV-2 spike (S) proteins undergo extensive glycosylation, aiding in proper folding, enhancing stability, and evading host immune surveillance. In this study, we used mass spectrometric analysis to elucidate the N-glycosylation characteristics and disulfide bonding of recombinant spike proteins derived from the SARS-CoV-2 Omicron variant (B.1.1.529) in comparison with the D614G spike variant. Furthermore, we conducted microsecond-long molecular dynamics simulations on spike proteins to resolve how the different N-glycans impact spike conformational sampling in the two variants. Our findings reveal that the Omicron spike protein maintains an overall resemblance to the D614G spike variant in terms of site-specific glycan processing and disulfide bond formation. Nonetheless, alterations in glycans were observed at certain N-glycosylation sites. These changes, in synergy with mutations within the Omicron spike protein, result in increased surface accessibility of the macromolecule, including the ectodomain, receptor-binding domain, and N-terminal domain. Additionally, mutagenesis and pull-down assays reveal the role of glycosylation of a specific sequon (N149); furthermore, the correlation of MD simulation and HDX-MS identified several high-dynamic areas of the spike proteins. These insights contribute to our understanding of the interplay between structure and function, thereby advancing effective vaccination and therapeutic strategies.


Assuntos
Simulação de Dinâmica Molecular , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Glicosilação , SARS-CoV-2/química , SARS-CoV-2/genética , Humanos , Polissacarídeos/química , Polissacarídeos/metabolismo , COVID-19/virologia , Mutação , Conformação Proteica
15.
Anal Biochem ; 432(2): 115-23, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23017875

RESUMO

Botulinum neurotoxins (BoNTs) are a family of seven toxin serotypes that are the most toxic substances known to humans. Intoxication with BoNT causes flaccid paralysis and can lead to death if untreated with serotype-specific antibodies. Supportive care, including ventilation, may be necessary. Rapid and sensitive detection of BoNT is necessary for timely clinical confirmation of clinical botulism. Previously, our laboratory developed a fast and sensitive mass spectrometry (MS) method termed the Endopep-MS assay. The BoNT serotypes are rapidly detected and differentiated by extracting the toxin with serotype-specific antibodies and detecting the unique and serotype-specific cleavage products of peptide substrates that mimic the sequence of the BoNT native targets. To further improve the sensitivity of the Endopep-MS assay, we report here the optimization of the substrate peptide for the detection of BoNT/A. Modifications on the terminal groups of the original peptide substrate with acetylation and amidation significantly improved the detection of BoNT/A cleavage products. The replacement of some internal amino acid residues with single or multiple substitutions led to further improvement. An optimized peptide increased assay sensitivity 5-fold with toxin spiked into buffer solution or different biological matrices.


Assuntos
Toxinas Botulínicas Tipo A/análise , Endopeptidases/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Acetilação , Sequência de Aminoácidos , Toxinas Botulínicas Tipo A/imunologia , Toxinas Botulínicas Tipo A/metabolismo , Botulismo/metabolismo , Imunoglobulina G/imunologia , Dados de Sequência Molecular , Peptídeos/síntese química , Peptídeos/química , Peptídeos/metabolismo , Especificidade por Substrato
16.
Anal Chem ; 84(11): 4652-8, 2012 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-22577857

RESUMO

Botulinum neurotoxin (BoNT) is one of the most toxic substances known. BoNT is classified into seven distinct serotypes labeled A-G. Among individual serotypes, researchers have identified subtypes based on amino acid variability within a serotype and toxin variants with minor amino acid sequence differences within a subtype. BoNT subtype identification is valuable for tracing and tracking bacterial pathogens. A proteomics approach is useful for BoNT subtyping since botulism is caused by botulinum neurotoxin and does not require the presence of the bacteria or its DNA. Enzymatic digestion and peptide identification using tandem mass spectrometry determines toxin protein sequences. However, with the conventional one-step digestion method, producing sufficient numbers of detectable peptides to cover the entire protein sequence is difficult, and incomplete sequence coverage results in uncertainty in distinguishing BoNT subtypes and toxin variants because of high sequence similarity. We report here a method of multiple enzymes and sequential in-gel digestion (MESID) to characterize the BoNT protein sequence. Complementary peptide detection from toxin digestions has yielded near-complete sequence coverage for all seven BoNT serotypes. Application of the method to a BoNT-contaminated carrot juice sample resulted in the identification of 98.4% protein sequence which led to a confident determination of the toxin subtype.


Assuntos
Toxinas Botulínicas/isolamento & purificação , Clostridium botulinum/química , Endopeptidases/química , Tipagem Molecular/métodos , Neurotoxinas/isolamento & purificação , Sequência de Aminoácidos , Toxinas Botulínicas/química , Toxinas Botulínicas/classificação , Cromatografia Líquida , Endopeptidases/metabolismo , Géis , Guanidina/química , Dados de Sequência Molecular , Neurotoxinas/química , Neurotoxinas/classificação , Proteômica , Alinhamento de Sequência , Espectrometria de Massas em Tandem
17.
Anal Bioanal Chem ; 403(1): 215-26, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22395449

RESUMO

Botulinum neurotoxins (BoNTs) cause the disease botulism, which can be lethal if untreated. There are seven known serotypes of BoNT, A-G, defined by their response to antisera. Many serotypes are distinguished into differing subtypes based on amino acid sequence, and many subtypes are further differentiated into toxin variants. Previous work in our laboratory described the use of a proteomics approach to distinguish subtype BoNT/A1 from BoNT/A2 where BoNT identities were confirmed after searching data against a database containing protein sequences of all known BoNT/A subtypes. We now describe here a similar approach to differentiate subtypes BoNT/B1, /B2, /B3, /B4, and /B5. Additionally, to identify new subtypes or hitherto unpublished amino acid substitutions, we created an amino acid substitution database covering every possible amino acid change. We used this database to differentiate multiple toxin variants within subtypes of BoNT/B1 and B2. More importantly, with our amino acid substitution database, we were able to identify a novel BoNT/B subtype, designated here as BoNT/B7. These techniques allow for subtype and strain level identification of both known and unknown BoNT/B rapidly with no DNA required.


Assuntos
Toxinas Botulínicas/metabolismo , Proteômica , Sequência de Aminoácidos , Toxinas Botulínicas/química , Toxinas Botulínicas Tipo A , Dados de Sequência Molecular , Espectrometria de Massas em Tandem
18.
Anal Chem ; 83(23): 9047-53, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22017298

RESUMO

Botulinum neurotoxins (BoNT) are the deadliest agents known. Previously, we reported an endopeptidase activity based method (Endopep-MS) that detects and differentiates BoNT serotypes A-G. This method uses serotype specific monoclonal antibodies and the specific enzymatic activity of BoNT against peptide substrates which mimic the toxin's natural target. Cleavage products from the reaction are detected by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. We have now developed a multiple reaction monitoring method to quantify the biological activity of BoNT serotypes A (BoNT/A) and B (BoNT/B) present in 0.5 mL of serum using electrospray mass spectrometry. The limit of quantification for each serotype is 1 mouse intraperitoneal lethal dose (MIPLD(50)) corresponding to 31 pg of BoNT/A and 15 pg of BoNT/B in this study. This method was applied to serum from rhesus macaques with inhalational botulism following exposure to BoNT/B, showing a maximum activity of 6.0 MIPLD(50)/mL in surviving animals and 653.6 MIPLD(50)/mL in animals that died in the study. The method detects BoNT/B in serum 2-5 h after exposure and up to 14 days. This is the first report of a quantitative method with sufficient sensitivity, selectivity, and low sample size requirements to measure circulating BoNT activity at multiple times during the course of botulism.


Assuntos
Toxinas Botulínicas Tipo A/sangue , Toxinas Botulínicas/sangue , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Animais , Anticorpos Monoclonais/imunologia , Macaca mulatta , Especificidade por Substrato
19.
Appl Environ Microbiol ; 77(4): 1301-8, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21169446

RESUMO

Botulinum neurotoxins (BoNTs) cause botulism, which can be fatal if it is untreated. BoNTs cleave proteins necessary for nerve transmission, resulting in paralysis. The in vivo protein target has been reported for all seven serotypes of BoNT, i.e., serotypes A to G. Knowledge of the cleavage sites has led to the development of several assays to detect BoNT based on its ability to cleave a peptide substrate derived from its in vivo protein target. Most serotypes of BoNT can be subdivided into subtypes, and previously, we demonstrated that three of the currently known subtypes of BoNT/F cleave a peptide substrate, a shortened version of synaptobrevin-2, between Q58 and K59. However, our research indicated that Clostridium baratii type F toxin did not cleave this peptide. In this study, we detail experiments demonstrating that Clostridium baratii type F toxin cleaves recombinant synaptobrevin-2 in the same location as that cleaved by proteolytic F toxin. In addition, we demonstrate that Clostridium baratii type F toxin can cleave a peptide substrate based on the sequence of synaptobrevin-2. This peptide substrate is an N-terminal extension of the original peptide substrate used for detection of other BoNT/F toxins and can be used to detect four of the currently known BoNT/F subtypes by mass spectrometry.


Assuntos
Proteínas de Bactérias/metabolismo , Toxinas Botulínicas/metabolismo , Clostridium/genética , Clostridium/metabolismo , Proteína 2 Associada à Membrana da Vesícula/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Clostridium botulinum tipo F/genética , Clostridium botulinum tipo F/metabolismo , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Especificidade por Substrato , Proteína 2 Associada à Membrana da Vesícula/química
20.
Anal Biochem ; 412(1): 67-73, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21276417

RESUMO

Botulinum neurotoxins (BoNTs) are the most toxic substances known to humankind. Rapid and sensitive detection of BoNTs is necessary for timely clinical confirmation of the disease state in botulism. BoNTs cleave proteins and peptide mimics at specific sites. A mass spectrometry (MS)-based method, Endopep-MS, can detect these cleavages and has detection limits of 0.05-0.5 mouse LD(50) (U) in serum, depending on the BoNT serotypes. In this method, the products generated from cleavage of peptide substrates using antibody affinity-purified toxins are detected by MS. Nonspecific bound endogenous proteases or peptidases in stool can coextract with the toxin, cleaving the peptide substrates and reducing the sensitivity of the method. Here we report a method to reduce nonspecific substrate cleavage by reducing stool protease coextraction in the Endopep-MS assay.


Assuntos
Toxinas Botulínicas Tipo A/análise , Fezes/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Toxinas Botulínicas Tipo A/isolamento & purificação , Endopeptidases/metabolismo , Cloreto de Sódio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA