RESUMO
INTRODUCTION: The methods employed to document cystoscopic findings in bladder cancer patients lack accuracy and are subject to observer variability. We propose a novel endoimaging system and an online documentation platform to provide post-procedural 3D bladder reconstructions for improved diagnosis, management and follow-up. MATERIAL AND METHODS: The RaVeNNA4pi consortium is comprised of five industrial partners, two university hospitals and two technical institutes. These are grouped into hardware, software and clinical partners according to their professional expertise. The envisaged endoimaging system consists of an innovative cystoscope that generates 3D bladder reconstructions allowing users to remotely access a cloud-based centralized database to visualize individualized 3D bladder models from previous cystoscopies archived in DICOM format. RESULTS: Preliminary investigations successfully tracked the endoscope's rotational and translational movements. The structure-from-motion pipeline was tested in a bladder phantom and satisfactorily demonstrated 3D reconstructions of the processing sequence. AI-based semantic image segmentation achieved a 0.67 dice-score-coefficient over all classes. An online-platform allows physicians and patients to digitally visualize endoscopic findings by navigating a 3D bladder model. CONCLUSIONS: Our work demonstrates the current developments of a novel endoimaging system equipped with the potential to generate 3D bladder reconstructions from cystoscopy videos and AI-assisted automated detection of bladder tumors.
Assuntos
Neoplasias da Bexiga Urinária , Cistoscopia , Humanos , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Bexiga Urinária/diagnóstico por imagem , Neoplasias da Bexiga Urinária/diagnóstico por imagemRESUMO
Superconductivity and magnetism generally do not coexist. Changing the relative number of up and down spin electrons disrupts the basic mechanism of superconductivity, where atoms of opposite momentum and spin form Cooper pairs. Nearly forty years ago Fulde and Ferrell and Larkin and Ovchinnikov (FFLO) proposed an exotic pairing mechanism in which magnetism is accommodated by the formation of pairs with finite momentum. Despite intense theoretical and experimental efforts, however, polarized superconductivity remains largely elusive. Unlike the three-dimensional (3D) case, theories predict that in one dimension (1D) a state with FFLO correlations occupies a major part of the phase diagram. Here we report experimental measurements of density profiles of a two-spin mixture of ultracold (6)Li atoms trapped in an array of 1D tubes (a system analogous to electrons in 1D wires). At finite spin imbalance, the system phase separates with an inverted phase profile, as compared to the 3D case. In 1D, we find a partially polarized core surrounded by wings which, depending on the degree of polarization, are composed of either a completely paired or a fully polarized Fermi gas. Our work paves the way to direct observation and characterization of FFLO pairing.
RESUMO
Ultracold atoms in Raman-dressed optical lattices allow for effective momentum-dependent interactions among single-species fermions originating from short-range s-wave interactions. These dressed-state interactions combined with the very flat bands encountered in the recently introduced optical flux lattices push the Stoner instability towards weaker repulsive interactions, making it accessible with current experiments. As a consequence of the coupling between spin and orbital degrees of freedom, the magnetic phase features Ising nematic order.
RESUMO
We calculate the zero-temperature (T=0) phase diagram of a polarized two-component Fermi gas in an array of weakly coupled parallel one-dimensional (1D) "tubes" produced by a two-dimensional optical lattice. Increasing the lattice strength drives a crossover from three-dimensional (3D) to 1D behavior, stabilizing the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) modulated superfluid phase. We argue that the most promising regime for observing the FFLO phase is in the quasi-1D regime, where the atomic motion is largely 1D but there is weak tunneling in the other directions that stabilizes long-range order. In the FFLO phase, we describe a phase transition where the quasiparticle spectrum changes from gapless near the 3D regime to gapped in quasi-1D.
RESUMO
Secreted aspartyl proteinases (Saps) contribute to the ability of Candida albicans to cause mucosal and disseminated infections. A model of vaginal candidiasis based on reconstituted human vaginal epithelium (RHVE) was used to study the expression and role of these C. albicans proteinases during infection and tissue damage of vaginal epithelium. Colonization of the RHVE by C. albicans SC5314 did not cause any visible epithelial damage 6 h after inoculation, although expression of SAP2, SAP9, and SAP10 was detected by reverse transcriptase PCR. However, significant epithelial damage was observed after 12 h, concomitant with the additional expression of SAP1, SAP4, and SAP5. Additional transcripts of SAP6 and SAP7 were detected at a later stage of the artificial infection (24 h). Similar SAP expression profiles were observed in three samples isolated from human patients with vaginal candidiasis. In experimental infection, secretion of antigens Sap1 to Sap6 by C. albicans was confirmed at the ultrastructural level by using polyclonal antisera raised against Sap1 to Sap6. Addition of the aspartyl proteinase inhibitors pepstatin A and the human immunodeficiency virus proteinase inhibitors ritonavir and amprenavir strongly reduced the tissue damage of the vaginal epithelia by C. albicans cells. Furthermore, SAP null mutants lacking either SAP1 or SAP2 had a drastically reduced potential to cause tissue damage even though SAP3, SAP4, and SAP7 were up-regulated in these mutants. In contrast the vaginopathic potential of mutants lacking SAP3 or SAP4 to SAP6 was not reduced compared to wild-type cells. These data provide further evidence for a crucial role of Sap1 and Sap2 in C. albicans vaginal infections.