Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 248
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
J Neuroinflammation ; 21(1): 185, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080670

RESUMO

BACKGROUND: Brain inflammation contributes significantly to the pathophysiology of Alzheimer's disease, and it is manifested by glial cell activation, increased production of cytokines/chemokines, and a shift in lipid mediators from a pro-homeostatic to a pro-inflammatory profile. However, whether the production of bioactive lipid mediators is affected at earlier stages, prior to the deposition of Aß plaques and tau hyperphosphorylation, is unknown. The differential contribution of an evolving amyloid and tau pathology on the composition and abundance of membrane phospholipids and bioactive lipid mediators also remains unresolved. METHODS: In this study, we examined the cortical levels of DHA- and AA-derived bioactive lipid mediators and of membrane phospholipids by liquid chromatography with tandem mass spectrometry in transgenic rat models of the Alzheimer's-like amyloid and tau pathologies at early and advanced pathological stages. RESULTS: Our findings revealed a complex balance between pro-inflammatory and pro-resolving processes in which tau pathology has a more pronounced effect compared to amyloid pathology. At stages preceding tau misfolding and aggregation, there was an increase in pro-resolving lipid mediators (RVD6 and NPD1), DHA-containing phospholipids and IFN-γ levels. However, in advanced tau pathology displaying NFT-like inclusions, neuronal death, glial activation and cognitive deficits, there was an increase in cytokine and PGD2, PGE2, and PGF2α generation accompanied by a drop in IFN-γ levels. This pathology also resulted in a marked increase in AA-containing phospholipids. In comparison, pre-plaque amyloid pathology already presented high levels of cytokines and AA-containing phospholipids together with elevated RVD6 and NPD1 levels. Finally, Aß plaque deposition was accompanied by a modest increase in prostaglandins, increased AA-containing phospholipids and reduced DHA-containing phospholipids. CONCLUSIONS: Our findings suggest a dynamic trajectory of inflammatory and lipid mediators in the evolving amyloid and tau pathologies and support their differing roles on membrane properties and, consequentially, on signal transduction.


Assuntos
Doença de Alzheimer , Encéfalo , Modelos Animais de Doenças , Fosfolipídeos , Ratos Transgênicos , Proteínas tau , Animais , Fosfolipídeos/metabolismo , Ratos , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Proteínas tau/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Peptídeos beta-Amiloides/metabolismo , Placa Amiloide/patologia , Placa Amiloide/metabolismo , Masculino , Humanos
2.
Exp Eye Res ; 235: 109639, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37659709

RESUMO

Docosahexaenoic acid (DHA; 22:6) plays a key role in vision and is the precursor for very-long-chain polyunsaturated fatty acids (VLC-PUFAs). The release of 32- and 34-carbon VLC-PUFAs and DHA from sn-1 and sn-2 of phosphatidylcholine (PC) leads to the synthesis of cell-survival mediators, the elovanoids (ELVs) and neuroprotectin D1 (NPD1), respectively. Macula and periphery from age-related macular degeneration (AMD) donor retinas were assessed for the availability of DHA-related lipids by LC-MS/MS-based lipidomic analysis and MALDI-molecular imaging. We found reduced retina DHA and VLC-PUFA pathways to synthesize omega-3 ELVs from precursors that likely resulted in altered disks and photoreceptor loss. Additionally, we compared omega-3 (n-3) fatty acid with DHA (22:6) and omega-6 (n-6) fatty acid with arachidonic acid (AA; 20:4) pathways. n-3 PC(22:6/22:6, 44:12) and n-6 PC(20:4/20:4, 40:8) showed differences among male/female, macula/periphery, and normal/AMD retinas. Periphery of AMD retina males increased 44:12 abundance, while normal females increased 40:8 (all macula had an upward 40:8 tendency). We also showed that female AMD switched from n-3 to n-6 fatty acids; most changes in AMD occurred in the periphery of female AMD retinas. DHA and VLC-PUFA release from PCs leads to conversion in pro-survival NPD1 and ELVs. The loss of the neuroprotective precursors of ELVs in the retina periphery from AMD facilitates uncompensated stress and cell loss. In AMD, the female retina loses peripheral rods VLC-PUFAs to about 33% less than in males limiting ELV formation and its protective bioactivity.


Assuntos
Ácidos Graxos Ômega-3 , Degeneração Macular , Feminino , Masculino , Humanos , Regulação para Baixo , Cromatografia Líquida , Espectrometria de Massas em Tandem
3.
Cell Mol Neurobiol ; 43(3): 1077-1096, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35622188

RESUMO

Wnt5a triggers inflammatory responses and damage via NFkB/p65 in retinal pigment epithelial (RPE) cells undergoing uncompensated oxidative stress (UOS) and in experimental ischemic stroke. We found that Wnt5a-Clathrin-mediated uptake leads to NFkB/p65 activation and that Wnt5a is secreted in an exosome-independent fashion. We uncovered that docosahexaenoic acid (DHA) and its derivative, Neuroprotectin D1 (NPD1), upregulate c-Rel expression that, as a result, blunts Wnt5a abundance by competing with NFkB/p65 on the Wnt5a promoter A. Wnt5a increases in ischemic stroke penumbra and blood, while DHA reduces Wnt5a abundance with concomitant neuroprotection. Peptide inhibitor of Wnt5a binding, Box5, is also neuroprotective. DHA-decreased Wnt5a expression is concurrent with a drop in NFkB-driven inflammatory cytokine expression, revealing mechanisms after stroke, as in RPE cells exposed to UOS. Limiting the Wnt5a activity via Box5 reduces stroke size, suggesting neuroprotection pertinent to onset and progression of retinal degenerations and stroke consequences. NPD1 disrupts Wnt5a feedback loop at two sites: (1) decreasing FZD5, thus Wnt5a internalization, and (2) by enhancing cREL activity, which competes with p65/NFkB downstream endocytosis. As a result, Wnt5a expression is reduced, and so is its inflammatory signaling in RPE cells and neurons in ischemic stroke.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Docosa-Hexaenoicos/uso terapêutico , Neuroproteção , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/metabolismo , Proteína Wnt-5a , Receptores Frizzled/metabolismo
4.
Cell Mol Neurobiol ; 43(2): 797-811, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35362880

RESUMO

Alzheimer's disease (AD) develops into dementia over a period of several years, during which subjective cognitive impairment (SCI) and mild cognitive impairment (MCI) can be used as intermediary diagnoses of increasing severity. Chronic neuroinflammation resulting from insufficient resolution is involved in the pathogenesis of AD and is associated with cognitive impairment. Specialized pro-resolving lipid mediators (LMs) that promote the resolution of inflammation may be valuable markers in AD diagnosis and as therapeutic targets. Liquid chromatography-tandem mass spectrometry was used to analyze pro-resolving and pro-inflammatory LMs in cerebrospinal fluid (CSF) from patients with cognitive impairment ranging from subjective impairment to a diagnosis of AD and correlated to cognition, CSF tau, and ß-amyloid. Resolvin (Rv) D4, RvD1, neuroprotectin D1 (NPD1), maresin 1 (MaR1), and RvE4 were lower in AD and/or MCI compared to SCI. The pro-inflammatory LTB4 and 15-HETE were higher in AD and MCI, respectively, while PGD2, PGE2, and PGF2a were decreased in AD, compared to SCI. RvD4 was also negatively correlated to AD tangle biomarkers, and positive correlations to cognitive test scores were observed for both pro-resolving LMs and their precursor fatty acids. In this exploratory study of the lipidome in CSF of AD, MCI, and SCI, the results indicate a shift in the LM profile from pro-resolving to pro-inflammatory in progression to AD, suggesting that it may be of use as a biomarker when followed by confirmation by replication studies.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides , Cognição , Inflamação , Biomarcadores , Proteínas tau , Fragmentos de Peptídeos , Progressão da Doença
5.
Cell Mol Neurobiol ; 43(7): 3555-3573, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37270727

RESUMO

Neuroprotection to attenuate or block the ischemic cascade and salvage neuronal damage has been extensively explored for treating ischemic stroke. However, despite increasing knowledge of the physiologic, mechanistic, and imaging characterizations of the ischemic penumbra, no effective neuroprotective therapy has been found. This study focuses on the neuroprotective bioactivity of docosanoid mediators: Neuroprotectin D1 (NPD1), Resolvin D1 (RvD1), and their combination in experimental stroke. Molecular targets of NPD1 and RvD1 are defined by following dose-response and therapeutic window. We demonstrated that treatment with NPD1, RvD1, and combination therapy provides high-grade neurobehavioral recovery and decreases ischemic core and penumbra volumes even when administered up to 6 h after stroke. The expression of the following genes was salient: (a) Cd163, an anti-inflammatory stroke-associated gene, was the most differentially expressed gene by NPD1+RvD1, displaying more than a 123-fold upregulation in the ipsilesional penumbra (Lisi et al., Neurosci Lett 645:106-112, 2017); (b) 100-fold upregulation takes place in astrocyte gene PTX3, a key regulator of neurogenesis and angiogenesis after cerebral ischemia (. Rodriguez-Grande et al., J Neuroinflammation 12:15, 2015); and (c) Tmem119 and P2y12, two markers of homeostatic microglia, were found to be enhanced by ten- and fivefold, respectively (Walker et al. Int J Mol Sci 21:678, 2020). Overall, we uncovered that protection after middle cerebral artery occlusion (MCAo) by the lipid mediators elicits expression of microglia and astrocyte-specific genes (Tmem119, Fcrls, Osmr, Msr1, Cd68, Cd163, Amigo2, Thbs1, and Tm4sf1) likely participating in enhancing homeostatic microglia, modulating neuroinflammation, promoting DAMP clearance, activating NPC differentiation and maturation, synapse integrity and contributing to cell survival.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , AVC Isquêmico/metabolismo , Microglia/metabolismo , Astrócitos/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico , Isquemia Encefálica/metabolismo
6.
Proc Natl Acad Sci U S A ; 117(50): 32114-32123, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33257550

RESUMO

Fatty acid transport protein 4 (FATP4), a transmembrane protein in the endoplasmic reticulum (ER), is a recently identified negative regulator of the ER-associated retinal pigment epithelium (RPE)65 isomerase necessary for recycling 11-cis-retinal, the light-sensitive chromophore of both rod and cone opsin visual pigments. The role of FATP4 in the disease progression of retinal dystrophies associated with RPE65 mutations is completely unknown. Here we show that FATP4-deficiency in the RPE results in 2.8-fold and 1.7-fold increase of 11-cis- and 9-cis-retinals, respectively, improving dark-adaptation rates as well as survival and function of rods in the Rpe65 R91W knockin (KI) mouse model of Leber congenital amaurosis (LCA). Degradation of S-opsin in the proteasomes, but not in the lysosomes, was remarkably reduced in the KI mouse retinas lacking FATP4. FATP4-deficiency also significantly rescued S-opsin trafficking and M-opsin solubility in the KI retinas. The number of S-cones in the inferior retinas of 4- or 6-mo-old KI;Fatp4-/- mice was 7.6- or 13.5-fold greater than those in age-matched KI mice. Degeneration rates of S- and M-cones are negatively correlated with expression levels of FATP4 in the RPE of the KI, KI;Fatp4+/- , and KI;Fatp4-/- mice. Moreover, the visual function of S- and M-cones is markedly preserved in the KI;Fatp4-/- mice, displaying an inverse correlation with the FATP4 expression levels in the RPE of the three mutant lines. These findings establish FATP4 as a promising therapeutic target to improve the visual cycle, as well as survival and function of cones and rods in patients with RPE65 mutations.


Assuntos
Proteínas de Transporte de Ácido Graxo/deficiência , Amaurose Congênita de Leber/fisiopatologia , Retina/patologia , Visão Ocular/fisiologia , cis-trans-Isomerases/genética , Animais , Opsinas dos Cones/metabolismo , Modelos Animais de Doenças , Diterpenos/isolamento & purificação , Proteínas de Transporte de Ácido Graxo/genética , Humanos , Amaurose Congênita de Leber/genética , Amaurose Congênita de Leber/patologia , Camundongos , Camundongos Knockout , Mutação , Retina/metabolismo , Retinaldeído/biossíntese , Retinaldeído/isolamento & purificação , cis-trans-Isomerases/metabolismo
7.
Cancer Metastasis Rev ; 40(3): 643-647, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34519960

RESUMO

Glioblastoma multiforme (GBM) is the most invasive type of glial tumor with poor overall survival, despite advances in surgical resection, chemotherapy, and radiation. One of the main challenges in treating GBM is related to the tumor's location, complex and heterogeneous biology, and high invasiveness. To meet the demand for oxygen and nutrients, growing tumors induce new blood vessels growth. Antibodies directed against vascular endothelial growth factor (VEGF), which promotes angiogenesis, have been developed to limit tumor growth. Bevacizumab (Avastin), an anti-VEGF monoclonal antibody, is the first approved angiogenesis inhibitor with therapeutic promise. However, it has limited efficacy, likely due to adaptive mutations in GBM, leading to overall survival compared to the standard of care in GBM patients. Molecular connections between angiogenesis, inflammation, oxidative stress pathways, and the development of gliomas have been recognized. Improvement in treatment outcomes for patients with GBM requires a multifaceted approach due to the converging dysregulation of signaling pathways. While most GBM clinical trials focus on "anti-angiogenic" modalities, stimulating inflammation resolution is a novel host-centric therapeutic avenue. The selective therapeutic possibilities for targeting the tumor microenvironment, specifically angiogenic and inflammatory pathways expand. So, a combination of agents aiming to interfere with several mechanisms might be beneficial to improve outcomes. Our approach might also be combined with other therapies to enhance sustained effectiveness. Here, we discuss Suramab (anti-angiogenic), LAU-0901 (a platelet-activating factor receptor antagonist), Elovanoid (ELV; a novel lipid mediator), and their combination as potential alternatives to contain GBM growth and invasiveness.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Inibidores da Angiogênese/uso terapêutico , Bevacizumab/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Homeostase , Humanos , Neovascularização Patológica/tratamento farmacológico , Microambiente Tumoral , Fator A de Crescimento do Endotélio Vascular/uso terapêutico
8.
Arch Biochem Biophys ; 717: 109124, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35085577

RESUMO

The coronavirus disease 2019 (COVID-19) is caused by the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS- CoV-2) with an estimated fatality rate of less than 1%. The SARS-CoV-2 accessory proteins ORF3a, ORF6, ORF7a, ORF7b, ORF8, and ORF10 possess putative functions to manipulate host immune mechanisms. These involve interferons, which appear as a consensus function, immune signaling receptor NLRP3 (NLR family pyrin domain-containing 3) inflammasome, and inflammatory cytokines such as interleukin 1ß (IL-1ß) and are critical in COVID-19 pathology. Outspread variations of each of the six accessory proteins were observed across six continents of all complete SARS-CoV-2 proteomes based on the data reported before November 2020. A decreasing order of percentage of unique variations in the accessory proteins was determined as ORF3a > ORF8 > ORF7a > ORF6 > ORF10 > ORF7b across all continents. The highest and lowest unique variations of ORF3a were observed in South America and Oceania, respectively. These findings suggest that the wide variations in accessory proteins seem to affect the pathogenicity of SARS-CoV-2.


Assuntos
COVID-19/virologia , SARS-CoV-2/genética , Proteínas Virais/genética , Proteínas Viroporinas/genética , COVID-19/patologia , Variação Genética , Humanos , Filogenia , SARS-CoV-2/patogenicidade
9.
FASEB J ; 35(8): e21775, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34245621

RESUMO

Innervation sustains cornea integrity. Pigment epithelium-derived factor (PEDF) plus docosahexaenoic acid (DHA) regenerated damaged nerves by stimulating the synthesis of a new stereoisomer of Resolvin D6 (RvD6si). Here, we resolved the structure of this lipid isolated from mouse tears after injured corneas were treated with PEDF + DHA. RvD6si synthesis was inhibited by fluvoxamine, a cytochrome P450 inhibitor, but not by 15- or 5-LOX inhibitors, suggesting that the 4- and 17-hydroxy of DHA have an RR- or SR-configuration. The two compounds were chemically synthesized. Using chiral phase HPLC, four peaks of RvD6si1-4 from tears were resolved. The RR-RvD6 standard eluted as a single peak with RvD61 while pure SR-RvD6 eluted with RvD63 . The addition of these pure mediators prompted a trigeminal ganglion transcriptome response in injured corneas and showed that RR-RvD6 was the more potent, increasing cornea sensitivity and nerve regeneration. RR-RvD6 stimulates Rictor and hepatocyte growth factor (hgf) genes specifically as upstream regulators and a gene network involved in axon growth and suppression of neuropathic pain, indicating a novel function of this lipid mediator to maintain cornea integrity and homeostasis after injury.


Assuntos
Ácidos Docosa-Hexaenoicos/metabolismo , Regeneração Nervosa , Nervo Trigêmeo/fisiologia , Animais , Fluvoxamina/farmacologia , Fator de Crescimento de Hepatócito/metabolismo , Masculino , Camundongos , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Estereoisomerismo , Relação Estrutura-Atividade
10.
Environ Res ; 204(Pt B): 112092, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34562480

RESUMO

Various lineages of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) have contributed to prolongation of the Coronavirus Disease 2019 (COVID-19) pandemic. Several non-synonymous mutations in SARS-CoV-2 proteins have generated multiple SARS-CoV-2 variants. In our previous report, we have shown that an evenly uneven distribution of unique protein variants of SARS-CoV-2 is geo-location or demography-specific. However, the correlation between the demographic transmutability of the SARS-CoV-2 infection and mutations in various proteins remains unknown due to hidden symmetry/asymmetry in the occurrence of mutations. This study tracked how these mutations are emerging in SARS-CoV-2 proteins in six model countries and globally. In a geo-location, considering the mutations having a frequency of detection of at least 500 in each SARS-CoV-2 protein, we studied the country-wise percentage of invariant residues. Our data revealed that since October 2020, highly frequent mutations in SARS-CoV-2 have been observed mostly in the Open Reading Frame (ORF) 7b and ORF8, worldwide. No such highly frequent mutations in any of the SARS-CoV-2 proteins were found in the UK, India, and Brazil, which does not correlate with the degree of transmissibility of the virus in India and Brazil. However, we have found a signature that SARS-CoV-2 proteins were evolving at a higher rate, and considering global data, mutations are detected in the majority of the available amino acid locations. Fractal analysis of each protein's normalized factor time series showed a periodically aperiodic emergence of dominant variants for SARS-CoV-2 protein mutations across different countries. It was noticed that certain high-frequency variants have emerged in the last couple of months, and thus the emerging SARS-CoV-2 strains are expected to contain prevalent mutations in the ORF3a, membrane, and ORF8 proteins. In contrast to other beta-coronaviruses, SARS-CoV-2 variants have rapidly emerged based on demographically dependent mutations. Characterization of the periodically aperiodic nature of the demographic spread of SARS-CoV-2 variants in various countries can contribute to the identification of the origin of SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Mutação , Incerteza
11.
Proc Natl Acad Sci U S A ; 116(48): 24317-24325, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31712409

RESUMO

The onset of neurodegenerative diseases activates inflammation that leads to progressive neuronal cell death and impairments in cognition (Alzheimer's disease) and sight (age-related macular degeneration [AMD]). How neuroinflammation can be counteracted is not known. In AMD, amyloid ß-peptide (Aß) accumulates in subretinal drusen. In the 5xFAD retina, we found early functional deficiencies (ERG) without photoreceptor cell (PRC) death and identified early insufficiency in biosynthetic pathways of prohomeostatic/neuroprotective mediators neuroprotectin D1 (NPD1) and elovanoids (ELVs). To mimic an inflammatory milieu in wild-type mouse, we triggered retinal pigment epithelium (RPE) damage/PRC death by subretinally injected oligomeric ß-amyloid (OAß) and observed that ELVs administration counteracted their effects, protecting these cells. In addition, ELVs prevented OAß-induced changes in gene expression engaged in senescence, inflammation, autophagy, extracellular matrix remodeling, and AMD. Moreover, as OAß targets the RPE, we used primary human RPE cell cultures and demonstrated that OAß caused cell damage, while ELVs protected and restored gene expression as in mouse. Our data show OAß activates senescence as reflected by enhanced expression of p16INK4a, MMP1, p53, p21, p27, and Il-6, and of senescence-associated phenotype secretome, followed by RPE and PRC demise, and that ELVs 32 and 34 blunt these events and elicit protection. In addition, ELVs counteracted OAß-induced expression of genes engaged in AMD, autophagy, and extracellular matrix remodeling. Overall, our data uncovered that ELVs downplay OAß-senescence program induction and inflammatory transcriptional events and protect RPE cells and PRC, and therefore have potential as a possible therapeutic avenue for AMD.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Células Fotorreceptoras/fisiologia , Peptídeos beta-Amiloides/toxicidade , Animais , Apoptose/fisiologia , Autofagia/efeitos dos fármacos , Células Cultivadas , Ácidos Docosa-Hexaenoicos/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células Fotorreceptoras/patologia , Retina/metabolismo , Retina/patologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/patologia , Adulto Jovem
12.
J Stroke Cerebrovasc Dis ; 31(8): 106585, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35717719

RESUMO

OBJECTIVE: We tested the hypothesis that blocking pro-inflammatory platelet-activating factor receptor (PAFR) with LAU-0901 (LAU) plus administering a selected docosanoid, aspirin-triggered neuroprotectin D1 (AT-NPD1), which activates cell-survival pathways after middle cerebral artery occlusion (MCAo), would lead to neurological recovery. Dose-response and therapeutic window were investigated. MATERIALS AND METHODS: Male SD rats were subjected to 2 hours of MCAo. Behavior testing (days 1-7) and ex vivo MRI on day 7 were conducted. In dose-response, rats were treated with LAU (45 and 60 mg/kg; IP), AT-NPD1 (111, 222, 333 µg/kg; IV), LAU+AT-NPD1 (LAU at 3 hours and AT-NPD1 at 3.15 hours) or vehicle. In the therapeutic window, vehicle, LAU (60 mg/kg), AT-NPD1 (222 µg/kg), and LAU+AT-NPD1 were administered at 3, 4, 5, and 6 hours after onset of MCAo. RESULTS: LAU and AT-NPD1 treatments alone improved behavior by 40-42% and 20-30%, respectively, and LAU+AT-NPD1 by 40% compared to the vehicle group. T2-weighted imaging (T2WI) volumes were reduced with all doses of LAU and AT-NPD1 by 73-90% and 67-83% and LAU+AT-NPD1 by 94% compared to vehicle. In the therapeutic window, LAU+AT-NPD1, when administered at 3, 4, 5, and 6 hours, improved behavior by 50, 56, 33, and 26% and reduced T2WI volumes by 93, 90, 82, and 84% compared to vehicle. CONCLUSIONS: We have shown here for the first time that LAU plus AT-NPD1 treatment affords high-grade neuroprotection in MCAo, equaling or exceeding that afforded by LAU or AT-NPD1 alone at considerably moderate doses. It has a broad therapeutic window extending to 6 hours after stroke onset.


Assuntos
AVC Isquêmico , Fármacos Neuroprotetores , Acidente Vascular Cerebral , Animais , Aspirina/uso terapêutico , Infarto da Artéria Cerebral Média/diagnóstico por imagem , Infarto da Artéria Cerebral Média/tratamento farmacológico , Masculino , Neuroproteção , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Ratos , Ratos Sprague-Dawley , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/etiologia
13.
J Lipid Res ; 62: 100058, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33662383

RESUMO

The essential fatty acid DHA (22:6, omega-3 or n-3) is enriched in and required for the membrane biogenesis and function of photoreceptor cells (PRCs), synapses, mitochondria, etc. of the CNS. PRC DHA becomes an acyl chain at the sn-2 of phosphatidylcholine, amounting to more than 50% of the PRC outer segment phospholipids, where phototransduction takes place. Very long chain PUFAs (n-3, ≥ 28 carbons) are at the sn-1 of this phosphatidylcholine molecular species and interact with rhodopsin. PRC shed their tips (DHA-rich membrane disks) daily, which in turn are phagocytized by the retinal pigment epithelium (RPE), where DHA is recycled back to PRC inner segments to be used for the biogenesis of new photoreceptor membranes. Here, we review the structures and stereochemistry of novel elovanoid (ELV)-N32 and ELV-N34 to be ELV-N32: (14Z,17Z,20R,21E,23E,25Z,27S,29Z)-20,27-dihydroxydo-triaconta-14,17,21,23,25,29-hexaenoic acid; ELV-N34: (16Z,19Z,22R,23E,25E,27Z,29S,31Z)-22,29-dihydroxytetra-triaconta-16,19,23,25,27,31-hexaenoic acid. ELVs are low-abundance, high-potency, protective mediators. Their bioactivity includes enhancing of antiapoptotic and prosurvival protein expression with concomitant downregulation of proapoptotic proteins when RPE is confronted with uncompensated oxidative stress. ELVs also target PRC/RPE senescence gene programming, the senescence secretory phenotype in the interphotoreceptor matrix, as well as inflammaging (chronic, sterile, low-grade inflammation). An important lesson on neuroprotection is highlighted by the ELV mediators that target the terminally differentiated PRC and RPE, sustaining a beautifully synchronized renewal process. The role of ELVs in PRC and RPE viability and function uncovers insights on disease mechanisms and the development of therapeutics for age-related macular degeneration, Alzheimer's disease, and other pathologies.


Assuntos
Células Fotorreceptoras
14.
FASEB J ; 34(1): 912-929, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914617

RESUMO

Molecular decision-makers of photoreceptor (PRC) membrane organization and gene regulation are critical to understanding sight and retinal degenerations that lead to blindness. Using Mfrprd6 mice, which develop PRC degeneration, we uncovered that membrane-type frizzled-related protein (MFRP) participates in docosahexaenoic acid (DHA, 22:6) enrichment in a manner similar to adiponectin receptor 1 (AdipoR1). Untargeted imaging mass spectrometry demonstrates cell-specific reduction of phospholipids containing 22:6 and very long-chain polyunsaturated fatty acids (VLC-PUFAs) in Adipor1-/- and Mfrprd6 retinas. Gene expression of pro-inflammatory signaling pathways is increased and gene-encoding proteins for PRC function decrease in both mutants. Thus, we propose that both proteins are necessary for retinal lipidome membrane organization, visual function, and to the understanding of the early pathology of retinal degenerative diseases.


Assuntos
Membrana Celular/metabolismo , Proteínas do Olho/metabolismo , Regulação da Expressão Gênica , Lipidômica , Proteínas de Membrana/metabolismo , Receptores de Adiponectina/metabolismo , Retina/metabolismo , Animais , Eletrorretinografia , Feminino , Inflamação , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Degeneração Retiniana/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Transdução de Sinais , Tomografia de Coerência Óptica
15.
J Lipid Res ; 61(12): 1733-1746, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33127836

RESUMO

Spatial changes of FAs in the retina in response to different dietary n-3 formulations have never been explored, although a diet rich in EPA and DHA is recommended to protect the retina against the effects of aging. In this study, Wistar rats were fed for 8 weeks with balanced diet including either EPA-containing phospholipids (PLs), EPA-containing TGs, DHA-containing PLs, or DHA-containing TGs. Qualitative changes in FA composition of plasma, erythrocytes, and retina were evaluated by gas chromatography-flame ionization detector. Following the different dietary intakes, changes to the quantity and spatial organization of PC and PE species in retina were determined by LC coupled to MS/MS and MALDI coupled to MS imaging. The omega-3 content in the lipids of plasma and erythrocytes suggests that PLs as well as TGs are good omega-3 carriers for retina. However, a significant increase in DHA content in retina was observed, especially molecular species as di-DHA-containing PC and PE, as well as an increase in very long chain PUFAs (more than 28 carbons) following PL-EPA and TG-DHA diets only. All supplemented diets triggered spatial organization changes of DHA in the photoreceptor layer around the optic nerve. Taken together, these findings suggest that dietary omega-3 supplementation can modify the content of FAs in the rat retina.


Assuntos
Ácidos Graxos Ômega-3/farmacocinética , Retina/metabolismo , Animais , Disponibilidade Biológica , Ácidos Graxos Ômega-3/metabolismo , Masculino , Ratos
16.
J Biol Chem ; 293(39): 15256-15268, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30115683

RESUMO

The retinal pigment epithelium (RPE)-dependent visual cycle provides 11-cis-retinal to opsins in the photoreceptor outer segments to generate functional visual pigments that initiate phototransduction in response to light stimuli. Both RPE65 isomerase of the visual cycle and the rhodopsin visual pigment have recently been identified as critical players in mediating light-induced retinal degeneration. These findings suggest that the expression and function of RPE65 and rhodopsin need to be coordinately controlled to sustain normal vision and to protect the retina from photodamage. However, the mechanism controlling the development of the retinal visual system remains poorly understood. Here, we show that deficiency in ciliary neurotrophic factor (CNTF) up-regulates the levels of rod and cone opsins accompanied by an increase in the thickness of the outer nuclear layers and the lengths of cone and rod outer segments in the mouse retina. Moreover, retinoid isomerase activity, expression levels of RPE65 and lecithin:retinol acyltransferase (LRAT), which synthesizes the RPE65 substrate, were also significantly increased in the Cntf-/- RPE. Rod a-wave and cone b-wave amplitudes of electroretinograms were increased in Cntf-/- mice, but rod b-wave amplitudes were unchanged compared with those in WT mice. Up-regulated RPE65 and LRAT levels accelerated both the visual cycle rate and recovery rate of rod light sensitivity in Cntf-/- mice. Of note, rods and cones in Cntf-/- mice exhibited hypersusceptibility to light-induced degeneration. These results indicate that CNTF is a common extracellular factor that prevents excessive production of opsins, the photoreceptor outer segments, and 11-cis-retinal to protect rods and cones from photodamage.


Assuntos
Aciltransferases/genética , Fator Neurotrófico Ciliar/genética , Retina/metabolismo , Degeneração Retiniana/genética , cis-trans-Isomerases/genética , Animais , Modelos Animais de Doenças , Eletrorretinografia , Humanos , Camundongos , Camundongos Knockout , Transporte Proteico/genética , Retina/patologia , Células Fotorreceptoras Retinianas Cones/metabolismo , Degeneração Retiniana/metabolismo , Degeneração Retiniana/fisiopatologia , Epitélio Pigmentado da Retina/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Retinaldeído/metabolismo , Rodopsina/metabolismo
17.
J Biol Chem ; 292(30): 12390-12397, 2017 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-28615451

RESUMO

Docosahexaenoic acid, enriched in the brain and retina, generates docosanoids in response to disruptions of cellular homeostasis. Docosanoids include neuroprotectin D1 (NPD1), which is decreased in the CA1 hippocampal area of patients with early-stage Alzheimer's disease (AD). We summarize here how NPD1 elicits neuroprotection by up-regulating c-REL, a nuclear factor (NF)-κB subtype that, in turn, enhances expression of BIRC3 (baculoviral inhibitor of apoptosis repeat-containing protein 3) in the retina and in experimental stroke, leading to neuroprotection. Elucidating the mechanisms of action of docosanoids will contribute to managing diseases, including stroke, AD, age-related macular degeneration, traumatic brain injury, Parkinson's disease, and other neurodegenerations.


Assuntos
Ácidos Docosa-Hexaenoicos/metabolismo , Homeostase , Neuroproteção , Transdução de Sinais , Animais , Humanos , Proteínas Proto-Oncogênicas c-rel/metabolismo
18.
J Biol Chem ; 292(30): 12373-12374, 2017 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-28615440

RESUMO

In this Thematic Minireview Series, three stimulating articles are presented: one on long non-coding RNAs, another on the ligand-activated transcription factor aryl hydrocarbon receptor, and the third on how docosanoids modulate transcriptionally modulated homeostasis and ultimately cell survival in the retina and brain.


Assuntos
Homeostase/genética , Inflamação/genética , Inflamação/metabolismo , RNA Longo não Codificante/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Transcrição Gênica , Encéfalo/citologia , Encéfalo/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Humanos , RNA Longo não Codificante/genética , Retina/citologia , Retina/efeitos dos fármacos
19.
J Biol Chem ; 292(45): 18486-18499, 2017 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-28972155

RESUMO

The cornea is densely innervated to sustain the integrity of the ocular surface. Corneal nerve damage produced by aging, diabetes, refractive surgeries, and viral or bacterial infections impairs tear production, the blinking reflex, and epithelial wound healing, resulting in loss of transparency and vision. A combination of the known neuroprotective molecule, pigment epithelium-derived factor (PEDF) plus docosahexaenoic acid (DHA), has been shown to stimulate corneal nerve regeneration, but the mechanisms involved are unclear. Here, we sought to define the molecular events of this effect in an in vivo mouse injury model. We first confirmed that PEDF + DHA increased nerve regeneration in the mouse cornea. Treatment with PEDF activates the phospholipase A2 activity of the PEDF-receptor (PEDF-R) leading to the release of DHA; this free DHA led to enhanced docosanoid synthesis and induction of bdnf, ngf, and the axon growth promoter semaphorin 7a (sema7a), and as a consequence, their products appeared in the mouse tears. Surprisingly, corneal injury and treatment with PEDF + DHA induced transcription of neuropeptide y (npy), small proline-rich protein 1a (sprr1a), and vasoactive intestinal peptide (vip) in the trigeminal ganglia (TG). The PEDF-R inhibitor, atglistatin, blocked all of these changes in the cornea and TG. In conclusion, we uncovered here an active cornea-TG axis, driven by PEDF-R activation, that fosters axon outgrowth in the cornea.


Assuntos
Córnea/inervação , Ácidos Docosa-Hexaenoicos/uso terapêutico , Proteínas do Olho/uso terapêutico , Modelos Neurológicos , Fatores de Crescimento Neural/uso terapêutico , Regeneração Nervosa/efeitos dos fármacos , Receptores de Neuropeptídeos/agonistas , Serpinas/uso terapêutico , Nervo Trigêmeo/efeitos dos fármacos , Administração Oftálmica , Animais , Córnea/efeitos dos fármacos , Córnea/patologia , Córnea/fisiologia , Ácidos Docosa-Hexaenoicos/administração & dosagem , Ácidos Docosa-Hexaenoicos/metabolismo , Quimioterapia Combinada , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/farmacologia , Proteínas do Olho/administração & dosagem , Proteínas do Olho/agonistas , Proteínas do Olho/antagonistas & inibidores , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Proteínas do Olho/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Injeções Intraperitoneais , Masculino , Camundongos Endogâmicos C57BL , Fatores de Crescimento Neural/administração & dosagem , Fatores de Crescimento Neural/farmacologia , Proteínas do Tecido Nervoso/agonistas , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Técnicas de Cultura de Órgãos , Compostos de Fenilureia/administração & dosagem , Compostos de Fenilureia/farmacologia , Receptores de Neuropeptídeos/antagonistas & inibidores , Receptores de Neuropeptídeos/metabolismo , Serpinas/administração & dosagem , Serpinas/farmacologia , Gânglio Trigeminal/efeitos dos fármacos , Gânglio Trigeminal/patologia , Gânglio Trigeminal/fisiologia , Nervo Trigêmeo/patologia , Nervo Trigêmeo/fisiologia , Traumatismos do Nervo Trigêmeo/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA