Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 183(6): 1682-1698.e24, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33232692

RESUMO

In order to analyze how a signal transduction network converts cellular inputs into cellular outputs, ideally one would measure the dynamics of many signals within the network simultaneously. We found that, by fusing a fluorescent reporter to a pair of self-assembling peptides, it could be stably clustered within cells at random points, distant enough to be resolved by a microscope but close enough to spatially sample the relevant biology. Because such clusters, which we call signaling reporter islands (SiRIs), can be modularly designed, they permit a set of fluorescent reporters to be efficiently adapted for simultaneous measurement of multiple nodes of a signal transduction network within single cells. We created SiRIs for indicators of second messengers and kinases and used them, in hippocampal neurons in culture and intact brain slices, to discover relationships between the speed of calcium signaling, and the amplitude of PKA signaling, upon receiving a cAMP-driving stimulus.


Assuntos
Corantes Fluorescentes/metabolismo , Genes Reporter , Imagem Óptica , Transdução de Sinais , Animais , Cálcio/metabolismo , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Feminino , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Hipocampo/metabolismo , Humanos , Camundongos , Neurônios/metabolismo , Peptídeos/metabolismo , Proteínas/metabolismo , Células Piramidais/metabolismo
2.
J Neurosci ; 43(44): 7307-7321, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37714707

RESUMO

In mouse primary visual cortex (V1), familiar stimuli evoke significantly altered responses when compared with novel stimuli. This stimulus-selective response plasticity (SRP) was described originally as an increase in the magnitude of visual evoked potentials (VEPs) elicited in layer 4 (L4) by familiar phase-reversing grating stimuli. SRP is dependent on NMDA receptors (NMDARs) and has been hypothesized to reflect potentiation of thalamocortical (TC) synapses in L4. However, recent evidence indicates that the synaptic modifications that manifest as SRP do not occur on L4 principal cells. To shed light on where and how SRP is induced and expressed in male and female mice, the present study had three related aims: (1) to confirm that NMDAR are required specifically in glutamatergic principal neurons of V1, (2) to investigate the consequences of deleting NMDAR specifically in L6, and (3) to use translaminar electrophysiological recordings to characterize SRP expression in different layers of V1. We find that knock-out (KO) of NMDAR in L6 principal neurons disrupts SRP. Current-source density (CSD) analysis of the VEP depth profile shows augmentation of short latency current sinks in layers 3, 4, and 6 in response to phase reversals of familiar stimuli. Multiunit recordings demonstrate that increased peak firing occurs in response to phase reversals of familiar stimuli across all layers, but that activity between phase reversals is suppressed. Together, these data reveal important aspects of the underlying phenomenology of SRP and generate new hypotheses for the expression of experience-dependent plasticity in V1.SIGNIFICANCE STATEMENT Repeated exposure to stimuli that portend neither reward nor punishment leads to behavioral habituation, enabling organisms to dedicate attention to novel or otherwise significant features of the environment. The neural basis of this process, which is so often dysregulated in neurologic and psychiatric disorders, remains poorly understood. Learning and memory of stimulus familiarity can be studied in mouse visual cortex by measuring electrophysiological responses to simple phase-reversing grating stimuli. The current study advances knowledge of this process by documenting changes in visual evoked potentials (VEPs), neuronal spiking activity, and oscillations in the local field potentials (LFPs) across all layers of mouse visual cortex. In addition, we identify a key contribution of a specific population of neurons in layer 6 (L6) of visual cortex.


Assuntos
Potenciais Evocados Visuais , Córtex Visual , Humanos , Camundongos , Masculino , Feminino , Animais , Aprendizagem/fisiologia , Neurônios/fisiologia , Córtex Visual/fisiologia , Memória , Estimulação Luminosa
3.
Cell ; 135(3): 401-6, 2008 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-18984149

RESUMO

Autism is a complex genetic disorder, but single-gene disorders with a high prevalence of autism offer insight into its pathogenesis. Recent evidence suggests that some molecular defects in autism may interfere with the mechanisms of synaptic protein synthesis. We propose that aberrant synaptic protein synthesis may represent one possible pathway leading to autistic phenotypes, including cognitive impairment and savant abilities.


Assuntos
Transtorno Autístico/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Biossíntese de Proteínas , Animais , Cognição , Humanos , Camundongos , Plasticidade Neuronal , Sinapses/metabolismo
4.
J Neuroophthalmol ; 43(1): 76-81, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36166713

RESUMO

BACKGROUND: Recovery from amblyopia in adulthood after fellow eye (FE) vision loss is a well-known phenomenon. Incidence of recovery varies widely following different FE pathologies, and the rate of recovery after FE ischemic optic neuropathy (ION) has not been examined. We aimed to determine the frequency and degree of improvement in amblyopic eye (AE) visual function after ION in the FE. METHODS: We performed a retrospective chart review of patients between 2007 and 2021 confirmed to have amblyopia and ischemic optic neuropathy in different eyes. Patients with unstable ocular pathology potentially limiting vision were excluded. We compared the best-corrected visual acuity (VA) in each eye before and after FE ION over time. For patients with available data, we examined change in perimetric performance over time. RESULTS: Among the 12 patients who met the inclusion criteria (mean age 67 ± 8 years), 9 (75%) improved ≥1 line and 2 (17%) improved ≥3 lines. The median time from ION symptom onset to maximal improvement was 6 months (range: 2-101 months). Reliable perimetric data were available for 6 patients. Mean sensitivity improved in the AE for all patients, with mean improvement of 1.9 ± 1.1 dB. There was no correspondence between foci of ION-related field loss and gains in field sensitivity in the AE. CONCLUSIONS: A high proportion of patients with amblyopia and contralateral ION experience improvement in AEVA. Modest gains in perimetric sensitivity in the AE may accompany FE ION. These findings support the view that residual plasticity in the adult visual cortex can be tapped to support functional improvement in amblyopia.


Assuntos
Ambliopia , Neuropatia Óptica Isquêmica , Adulto , Humanos , Pessoa de Meia-Idade , Idoso , Ambliopia/terapia , Acuidade Visual , Estudos Retrospectivos , Neuropatia Óptica Isquêmica/diagnóstico , Olho
5.
J Neurosci ; 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34103358

RESUMO

Learning to recognize and filter familiar, irrelevant sensory stimuli eases the computational burden on the cerebral cortex. Inhibition is a candidate mechanism in this filtration process, and oscillations in the cortical local field potential (LFP) serve as markers of the engagement of different inhibitory neurons. We show here that LFP oscillatory activity in visual cortex is profoundly altered as male and female mice learn to recognize an oriented grating stimulus-low frequency (∼15 Hz peak) power sharply increases while high frequency (∼65 Hz peak) power decreases. These changes report recognition of the familiar pattern, as they disappear when the stimulus is rotated to a novel orientation. Two-photon imaging of neuronal activity reveals that parvalbumin-expressing inhibitory neurons disengage with familiar stimuli and reactivate to novelty, whereas somatostatin-expressing inhibitory neurons show opposing activity patterns. We propose a model in which the balance of two interacting interneuron circuits shifts as novel stimuli become familiar.SIGNIFICANCE STATEMENT:Habituation, familiarity and novelty detection are fundamental cognitive processes that enable organisms to adaptively filter meaningless stimuli and focus attention on potentially important elements of their environment. We have shown that this process can be studied fruitfully in the mouse primary visual cortex by using simple grating stimuli for which novelty and familiarity are defined by orientation, and by measuring stimulus-evoked and continuous local field potentials. Altered event-related and spontaneous potentials, and deficient habituation, are well-documented features of several neurodevelopmental psychiatric disorders. The paradigm described here will be valuable to interrogate the origins of these signals and the meaning of their disruption more deeply.

6.
J Neurosci ; 41(19): 4202-4211, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33833081

RESUMO

Memory consolidation is thought to occur through protein synthesis-dependent synaptic plasticity mechanisms such as long-term potentiation (LTP). Dynamic changes in gene expression and epigenetic modifications underlie the maintenance of LTP. Similar mechanisms may mediate the storage of memory. Key plasticity genes, such as the immediate early gene Arc, are induced by learning and by LTP induction. Mice that lack Arc have severe deficits in memory consolidation, and Arc has been implicated in numerous other forms of synaptic plasticity, including long-term depression and cell-to-cell signaling. Here, we take a comprehensive approach to determine if Arc is necessary for hippocampal LTP in male and female mice. Using a variety of Arc knock-out (KO) lines, we found that germline Arc KO mice show no deficits in CA1 LTP induced by high-frequency stimulation and enhanced LTP induced by theta-burst stimulation. Temporally restricting the removal of Arc to adult animals and spatially restricting it to the CA1 using Arc conditional KO mice did not have an effect on any form of LTP. Similarly, acute application of Arc antisense oligodeoxynucleotides had no effect on hippocampal CA1 LTP. Finally, the maintenance of in vivo LTP in the dentate gyrus of Arc KO mice was normal. We conclude that Arc is not necessary for hippocampal LTP and may mediate memory consolidation through alternative mechanisms.SIGNIFICANCE STATEMENT The immediate early gene Arc is critical for maintenance of long-term memory. How Arc mediates this process remains unclear, but it has been proposed to sustain Hebbian synaptic potentiation, which is a key component of memory encoding. This form of plasticity is modeled experimentally by induction of LTP, which increases Arc mRNA and protein expression. However, mechanistic data implicates Arc in the endocytosis of AMPA-type glutamate receptors and the weakening of synapses. Here, we took a comprehensive approach to determine if Arc is necessary for hippocampal LTP. We find that Arc is not required for LTP maintenance and may regulate memory storage through alternative mechanisms.


Assuntos
Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/fisiologia , Hipocampo/fisiologia , Potenciação de Longa Duração/genética , Potenciação de Longa Duração/fisiologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Animais , Região CA1 Hipocampal/fisiologia , Giro Denteado/fisiologia , Estimulação Elétrica , Feminino , Genes Precoces , Células Germinativas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasticidade Neuronal/genética , Plasticidade Neuronal/fisiologia , Oligonucleotídeos Antissenso/farmacologia , Ritmo Teta
7.
Mol Psychiatry ; 26(9): 4652-4669, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-32606374

RESUMO

Many neurodevelopmental disorders are characterized by impaired functional synaptic plasticity and abnormal dendritic spine morphology, but little is known about how these are related. Previous work in the Fmr1-/y mouse model of fragile X (FX) suggests that increased constitutive dendritic protein synthesis yields exaggerated mGluR5-dependent long-term synaptic depression (LTD) in area CA1 of the hippocampus, but an effect on spine structural plasticity remains to be determined. In the current study, we used simultaneous electrophysiology and time-lapse two photon imaging to examine how spines change their structure during LTD induced by activation of mGluRs or NMDA receptors (NMDARs), and how this plasticity is altered in Fmr1-/y mice. We were surprised to find that mGluR activation causes LTD and AMPA receptor internalization, but no spine shrinkage in either wildtype or Fmr1-/y mice. In contrast, NMDAR activation caused spine shrinkage as well as LTD in both genotypes. Spine shrinkage was initiated by non-ionotropic (metabotropic) signaling through NMDARs, and in wild-type mice this structural plasticity required activation of mTORC1 and new protein synthesis. In striking contrast, NMDA-induced spine plasticity in Fmr1-/y mice was no longer dependent on acute activation of mTORC1 or de novo protein synthesis. These findings reveal that the structural consequences of mGluR and metabotropic NMDAR activation differ, and that a brake on spine structural plasticity, normally provided by mTORC1 regulation of protein synthesis, is absent in FX. Increased constitutive protein synthesis in FX appears to modify functional and structural plasticity induced through different glutamate receptors.


Assuntos
Depressão Sináptica de Longo Prazo , Receptores de N-Metil-D-Aspartato , Animais , Espinhas Dendríticas/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Hipocampo/metabolismo , Camundongos , Camundongos Knockout , Plasticidade Neuronal , Receptores de N-Metil-D-Aspartato/metabolismo
8.
Curr Opin Ophthalmol ; 33(6): 512-518, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36094025

RESUMO

PURPOSE OF REVIEW: We examine the development of amblyopia and the effectiveness of conventional and emerging therapies through the lens of the Bienenstock, Cooper, and Munro (BCM) theory of synaptic modification. RECENT FINDINGS: The BCM theory posits metaplastic adjustment in the threshold for synaptic potentiation, governed by prior neuronal activity. Viewing established clinical principles of amblyopia treatment from the perspective of the BCM theory, occlusion, blur, or release of interocular suppression reduce visual cortical activity in the amblyopic state to lower the modification threshold and enable amblyopic eye strengthening. Although efficacy of these treatment approaches declines with age, significant loss of vision in the fellow eye by damage or disease can trigger visual acuity improvements in the amblyopic eye of adults. Likewise, reversible retinal inactivation stimulates recovery of amblyopic eye visual function in adult mice and cats. SUMMARY: Conventional and emerging amblyopia treatment responses abide by the framework of BCM theory. Preclinical studies support that the dramatic reduction in cortical activity accompanying temporary retinal silencing can promote recovery from amblyopia even in adulthood, highlighting a promising therapeutic avenue.


Assuntos
Ambliopia , Ambliopia/terapia , Animais , Humanos , Camundongos , Plasticidade Neuronal , Retina , Acuidade Visual
9.
Cereb Cortex ; 30(4): 2555-2572, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-31832634

RESUMO

Primary visual cortex (V1) is the locus of numerous forms of experience-dependent plasticity. Restricting visual stimulation to one eye at a time has revealed that many such forms of plasticity are eye-specific, indicating that synaptic modification occurs prior to binocular integration of thalamocortical inputs. A common feature of these forms of plasticity is the requirement for NMDA receptor (NMDAR) activation in V1. We therefore hypothesized that NMDARs in cortical layer 4 (L4), which receives the densest thalamocortical input, would be necessary for all forms of NMDAR-dependent and input-specific V1 plasticity. We tested this hypothesis in awake mice using a genetic approach to selectively delete NMDARs from L4 principal cells. We found, unexpectedly, that both stimulus-selective response potentiation and potentiation of open-eye responses following monocular deprivation (MD) persist in the absence of L4 NMDARs. In contrast, MD-driven depression of deprived-eye responses was impaired in mice lacking L4 NMDARs, as was L4 long-term depression in V1 slices. Our findings reveal a crucial requirement for L4 NMDARs in visual cortical synaptic depression, and a surprisingly negligible role for them in cortical response potentiation. These results demonstrate that NMDARs within distinct cellular subpopulations support different forms of experience-dependent plasticity.


Assuntos
Potenciais Evocados Visuais/fisiologia , Plasticidade Neuronal/fisiologia , Estimulação Luminosa/métodos , Receptores de N-Metil-D-Aspartato/deficiência , Privação Sensorial/fisiologia , Córtex Visual/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Receptores de N-Metil-D-Aspartato/genética
10.
Annu Rev Neurosci ; 35: 417-43, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22483044

RESUMO

Fragile X is the most common known inherited cause of intellectual disability and autism, and it typically results from transcriptional silencing of FMR1 and loss of the encoded protein, FMRP (fragile X mental retardation protein). FMRP is an mRNA-binding protein that functions at many synapses to inhibit local translation stimulated by metabotropic glutamate receptors (mGluRs) 1 and 5. Recent studies on the biology of FMRP and the signaling pathways downstream of mGluR1/5 have yielded deeper insight into how synaptic protein synthesis and plasticity are regulated by experience. This new knowledge has also suggested ways that altered signaling and synaptic function can be corrected in fragile X, and human clinical trials based on this information are under way.


Assuntos
Encéfalo/fisiopatologia , Proteína do X Frágil da Deficiência Intelectual/fisiologia , Síndrome do Cromossomo X Frágil/fisiopatologia , Sinapses/fisiologia , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Síndrome do Cromossomo X Frágil/metabolismo , Regulação da Expressão Gênica/fisiologia , Humanos , Modelos Biológicos , Proteínas do Tecido Nervoso/biossíntese , Plasticidade Neuronal/fisiologia , Biossíntese de Proteínas/fisiologia , RNA/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Transdução de Sinais/fisiologia , Sinapses/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA