Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 22(3): 322-335, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33531712

RESUMO

Immune system dysfunction is paramount in coronavirus disease 2019 (COVID-19) severity and fatality rate. Mucosal-associated invariant T (MAIT) cells are innate-like T cells involved in mucosal immunity and protection against viral infections. Here, we studied the immune cell landscape, with emphasis on MAIT cells, in cohorts totaling 208 patients with various stages of disease. MAIT cell frequency is strongly reduced in blood. They display a strong activated and cytotoxic phenotype that is more pronounced in lungs. Blood MAIT cell alterations positively correlate with the activation of other innate cells, proinflammatory cytokines, notably interleukin (IL)-18, and with the severity and mortality of severe acute respiratory syndrome coronavirus 2 infection. We also identified a monocyte/macrophage interferon (IFN)-α-IL-18 cytokine shift and the ability of infected macrophages to induce the cytotoxicity of MAIT cells in an MR1-dependent manner. Together, our results suggest that altered MAIT cell functions due to IFN-α-IL-18 imbalance contribute to disease severity, and their therapeutic manipulation may prevent deleterious inflammation in COVID-19 aggravation.


Assuntos
COVID-19/imunologia , Interferon-alfa/imunologia , Interleucina-18/imunologia , Macrófagos/imunologia , Monócitos/imunologia , Células T Invariantes Associadas à Mucosa/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Lavagem Broncoalveolar , Estudos de Casos e Controles , Chlorocebus aethiops , Estudos de Coortes , Feminino , França , Humanos , Imunofenotipagem , Interleucina-10/imunologia , Interleucina-15/imunologia , Interleucina-1beta/imunologia , Interleucina-6/imunologia , Interleucina-8/imunologia , Masculino , Pessoa de Meia-Idade , RNA-Seq , SARS-CoV-2 , Índice de Gravidade de Doença , Análise de Célula Única , Células Vero , Adulto Jovem
2.
Nat Immunol ; 19(9): 1035, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29880894

RESUMO

In the version of this Article originally published, the asterisks indicating statistical significance were missing from Supplementary Figure 6; the file with the correct figure is now available.

3.
Nat Immunol ; 18(12): 1321-1331, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28991267

RESUMO

Type 1 diabetes (T1D) is an autoimmune disease that results from the destruction of pancreatic ß-cells by the immune system that involves innate and adaptive immune cells. Mucosal-associated invariant T cells (MAIT cells) are innate-like T-cells that recognize derivatives of precursors of bacterial riboflavin presented by the major histocompatibility complex (MHC) class I-related molecule MR1. Since T1D is associated with modification of the gut microbiota, we investigated MAIT cells in this pathology. In patients with T1D and mice of the non-obese diabetic (NOD) strain, we detected alterations in MAIT cells, including increased production of granzyme B, which occurred before the onset of diabetes. Analysis of NOD mice that were deficient in MR1, and therefore lacked MAIT cells, revealed a loss of gut integrity and increased anti-islet responses associated with exacerbated diabetes. Together our data highlight the role of MAIT cells in the maintenance of gut integrity and the control of anti-islet autoimmune responses. Monitoring of MAIT cells might represent a new biomarker of T1D, while manipulation of these cells might open new therapeutic strategies.


Assuntos
Diabetes Mellitus Tipo 1/imunologia , Antígenos de Histocompatibilidade Classe I/análise , Mucosa Intestinal/imunologia , Antígenos de Histocompatibilidade Menor/análise , Células T Invariantes Associadas à Mucosa/imunologia , Pâncreas/imunologia , Animais , Células Cultivadas , Microbioma Gastrointestinal/imunologia , Granzimas/biossíntese , Humanos , Células Secretoras de Insulina/imunologia , Mucosa Intestinal/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Pâncreas/citologia
4.
Gut ; 71(2): 296-308, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33593807

RESUMO

OBJECTIVE: Type 1 diabetes (T1D) is an autoimmune disease caused by the destruction of pancreatic ß-cells producing insulin. Both T1D patients and animal models exhibit gut microbiota and mucosa alterations, although the exact cause for these remains poorly understood. We investigated the production of key cytokines controlling gut integrity, the abundance of segmented filamentous bacteria (SFB) involved in the production of these cytokines, and the respective role of autoimmune inflammation and hyperglycaemia. DESIGN: We used several mouse models of autoimmune T1D as well as mice rendered hyperglycaemic without inflammation to study gut mucosa and microbiota dysbiosis. We analysed cytokine expression in immune cells, epithelial cell function, SFB abundance and microbiota composition by 16S sequencing. We assessed the role of anti-tumour necrosis factor α on gut mucosa inflammation and T1D onset. RESULTS: We show in models of autoimmune T1D a conserved loss of interleukin (IL)-17A, IL-22 and IL-23A in gut mucosa. Intestinal epithelial cell function was altered and gut integrity was impaired. These defects were associated with dysbiosis including progressive loss of SFB. Transfer of diabetogenic T-cells recapitulated these gut alterations, whereas induction of hyperglycaemia with no inflammation failed to do so. Moreover, anti-inflammatory treatment restored gut mucosa and immune cell function and dampened diabetes incidence. CONCLUSION: Our results demonstrate that gut mucosa alterations and dysbiosis in T1D are primarily linked to inflammation rather than hyperglycaemia. Anti-inflammatory treatment preserves gut homeostasis and protective commensal flora reducing T1D incidence.


Assuntos
Bactérias/isolamento & purificação , Diabetes Mellitus Tipo 1/complicações , Disbiose/etiologia , Microbioma Gastrointestinal , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Animais , Citocinas/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/microbiologia , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Hiperglicemia/etiologia , Inflamação/etiologia , Mucosa Intestinal/metabolismo , Camundongos
5.
Diabetologia ; 64(10): 2306-2321, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34350463

RESUMO

AIMS/HYPOTHESIS: Mucosal-associated invariant T (MAIT) cells are innate-like T lymphocytes expressing an αß T cell antigen receptor that recognises the MHC-related 1 molecule. MAIT cells are altered in children at risk for and with type 1 diabetes, and mouse model studies have shown MAIT cell involvement in type 1 diabetes development. Since several studies support heterogeneity in type 1 diabetes physiopathology according to the age of individuals, we investigated whether MAIT cells were altered in adults with type 1 diabetes. METHODS: MAIT cell frequency, phenotype and function were analysed by flow cytometry, using fresh peripheral blood from 21 adults with recent-onset type 1 diabetes (2-14 days after disease onset) and 47 adults with long-term disease (>2 years after diagnosis) compared with 55 healthy blood donors. We also separately analysed 17 women with long-term type 1 diabetes and an associated autoimmune disease, compared with 30 healthy women and 27 women with long-term type 1 diabetes. RESULTS: MAIT cells from adults with recent-onset type 1 diabetes, compared with healthy adult donors, harboured a strongly activated phenotype indicated by an elevated CD25+ MAIT cell frequency. In adults with long-term type 1 diabetes, MAIT cells displayed an activated and exhausted phenotype characterised by high CD25 and programmed cell death 1 (PD1) expression and a decreased production of proinflammatory cytokines, IL-2, IFN-γ and TNF-α. Even though MAIT cells from these patients showed upregulated IL-17 and IL-4 production, the polyfunctionality of MAIT cells was decreased (median 4.8 vs 13.14% of MAIT cells, p < 0.001) and the frequency of MAIT cells producing none of the effector molecules analysed increased (median 34.40 vs 19.30% of MAIT cells, p < 0.01). Several MAIT cell variables correlated with HbA1c level and more particularly in patients with recent-onset type 1 diabetes. In women with long-term type 1 diabetes, MAIT cell alterations were more pronounced in those with an associated autoimmune disease than in those without another autoimmune disease. In women with long-term type 1 diabetes and an associated autoimmune disease, there was an increase in CD69 expression and a decrease in the survival B-cell lymphoma 2 (BCL-2) (p < 0.05) and CD127 (IL-7R) (p < 0.01) marker expression compared with women without a concomitant autoimmune disorder. Concerning effector molecules, TNF-α and granzyme B production by MAIT cells was decreased. CONCLUSIONS/INTERPRETATION: Alterations in MAIT cell frequency, phenotype and function were more pronounced in adults with long-term type 1 diabetes compared with adults with recent-onset type 1 diabetes. There were several correlations between MAIT cell variables and clinical characteristics. Moreover, the presence of another autoimmune disease in women with long-term type 1 diabetes further exacerbated MAIT cell alterations. Our results suggest that MAIT cell alterations in adults with type 1 diabetes could be associated with two aspects of the disease: impaired glucose homeostasis; and autoimmunity.


Assuntos
Diabetes Mellitus Tipo 1/patologia , Células T Invariantes Associadas à Mucosa/patologia , Adulto , Idoso , Antígenos CD , Antígenos de Diferenciação de Linfócitos T , Biomarcadores/metabolismo , Doadores de Sangue , Citocinas/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Feminino , Citometria de Fluxo , Humanos , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Lectinas Tipo C , Masculino , Pessoa de Meia-Idade , Células T Invariantes Associadas à Mucosa/metabolismo , Fenótipo , Receptor de Morte Celular Programada 1/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2 , Adulto Jovem
6.
Immunity ; 30(2): 289-99, 2009 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-19217323

RESUMO

Invariant natural killer T (iNKT) cells promote immune responses to various pathogens, but exactly how iNKT cells control antiviral responses is unclear. Here, we showed that iNKT cells induced tissue-specific antiviral effects in mice infected by lymphocytic choriomeningitis virus (LCMV). Indeed, iNKT cells inhibited viral replication in the pancreas and liver but not in the spleen. In the pancreas, iNKT cells expressed the OX40 molecule and promoted type I interferon (IFN) production by plasmacytoid dendritic cells (pDCs) through OX40-OX40 ligand interaction. Subsequently, this iNKT cell-pDC cooperation attenuated the antiviral adaptive immune response in the pancreas but not in the spleen. The dampening of pancreatic anti-LCMV CD8(+) T cell response prevented tissue damage in transgenic mice expressing LCMV protein in islet beta cells. Thus, this study identifies pDCs as an essential partner of iNKT cells for mounting an efficient, nondeleterious antiviral response in peripheral tissue.


Assuntos
Células Dendríticas/imunologia , Coriomeningite Linfocítica/imunologia , Coriomeningite Linfocítica/virologia , Vírus da Coriomeningite Linfocítica/imunologia , Células T Matadoras Naturais/imunologia , Receptores OX40/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Diabetes Mellitus/etiologia , Diabetes Mellitus/imunologia , Diabetes Mellitus/virologia , Fígado/imunologia , Fígado/virologia , Coriomeningite Linfocítica/complicações , Camundongos , Ligante OX40/imunologia , Especificidade de Órgãos/imunologia , Pâncreas/imunologia , Pâncreas/virologia , Transdução de Sinais/imunologia , Baço/imunologia , Baço/virologia , Replicação Viral
7.
Eur J Immunol ; 44(5): 1454-66, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24481989

RESUMO

Invariant NKT (iNKT)-cell stimulation with exogenous specific ligands prevents the development of type 1 diabetes (T1D) in NOD mice. Studies based on anti-islet T-cell transfer showed that iNKT cells prevent the differentiation of these T cells into effector T cells in the pancreatic lymph nodes (PLNs). We hypothesize that this defective priming could be explained by the ability of iNKT cells to induce tolerogenic dendritic cells (DCs) in the PLNs. We evaluated the effect of iNKT-cell stimulation on T1D development by transferring naïve diabetogenic BDC2.5 T cells into proinsulin 2(-/-) NOD mice treated with a long-lasting α-galactosylceramide regimen. In this context, iNKT cells induce the conversion of BDC2.5 T cells into Foxp3(+) Treg cells in the PLNs accumulating in the pancreatic islets. Furthermore, tolerogenic plasmacytoid DCs (pDCs) characterized by low MHC class II molecule expression and TGF-ß production are critical in the PLNs for the recruitment of Treg cells into the pancreatic islets by inducing CXCR3 expression. Accordingly, pDC depletion in α-galactosylceramide-treated proinsulin 2(-/-) NOD mice abrogates the protection against T1D. These findings reveal that upon repetitive iNKT-cell stimulation, pDCs are critical for the recruitment of Treg cells in the pancreatic islets and the prevention of T1D development.


Assuntos
Células Dendríticas/imunologia , Diabetes Mellitus Tipo 1/imunologia , Ilhotas Pancreáticas/imunologia , Células T Matadoras Naturais/imunologia , Plasmócitos/imunologia , Linfócitos T Reguladores/imunologia , Animais , Células Dendríticas/patologia , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/patologia , Diabetes Mellitus Tipo 1/prevenção & controle , Ilhotas Pancreáticas/patologia , Linfonodos/imunologia , Linfonodos/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Células T Matadoras Naturais/patologia , Plasmócitos/patologia , Proinsulina/genética , Proinsulina/imunologia , Linfócitos T Reguladores/patologia
8.
J Immunol ; 190(7): 3299-308, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23427253

RESUMO

Invariant NKT (iNKT) cells play key roles in host defense by recognizing lipid Ags presented by CD1d. iNKT cells are activated by bacterial-derived lipids and are also strongly autoreactive toward self-lipids. iNKT cell responsiveness must be regulated to maintain effective host defense while preventing uncontrolled stimulation and potential autoimmunity. CD1d-expressing thymocytes support iNKT cell development, but thymocyte-restricted expression of CD1d gives rise to Ag hyperresponsive iNKT cells. We hypothesized that iNKT cells require functional education by CD1d(+) cells other than thymocytes to set their correct responsiveness. In mice that expressed CD1d only on thymocytes, hyperresponsive iNKT cells in the periphery expressed significantly reduced levels of tyrosine phosphatase SHP-1, a negative regulator of TCR signaling. Accordingly, heterozygous SHP-1 mutant mice displaying reduced SHP-1 expression developed a comparable population of Ag hyperresponsive iNKT cells. Restoring nonthymocyte CD1d expression in transgenic mice normalized SHP-1 expression and iNKT cell reactivity. Radiation chimeras revealed that CD1d(+) dendritic cells supported iNKT cell upregulation of SHP-1 and decreased responsiveness after thymic emigration. Hence, dendritic cells functionally educate iNKT cells by tuning SHP-1 expression to limit reactivity.


Assuntos
Células Dendríticas/metabolismo , Células T Matadoras Naturais/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Animais , Antígenos CD1d/genética , Antígenos CD1d/metabolismo , Análise por Conglomerados , Células Dendríticas/imunologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Impressão Genômica , Humanos , Hipersensibilidade/genética , Hipersensibilidade/imunologia , Camundongos , Camundongos Knockout , Células T Matadoras Naturais/imunologia , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , Timo/imunologia , Timo/metabolismo
9.
J Immunol ; 191(5): 2335-43, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23926325

RESUMO

IgA plays ambivalent roles in the immune system. The balance between inhibitory and activating responses relies on the multimerization status of IgA and interaction with their cognate receptors. In mucosal sites, secretory IgA (SIgA) protects the host through immune-exclusion mechanisms, but its function in the bloodstream remains unknown. Using bone marrow-derived dendritic cells, we found that both human and mouse SIgA induce tolerogenic dendritic cells (DCs) following binding to specific ICAM-3 grabbing nonintegrin receptor 1. This interaction was dependent on Ca(2+) and mannose residues. SIgA-primed DCs (SIgA-DCs) are resistant to TLR-dependent maturation. Although SIgA-DCs fail to induce efficient proliferation and Th1 differentiation of naive responder T cells, they generate the expansion of regulatory T cells through IL-10 production. SIgA-DCs are highly potent in inhibiting autoimmune responses in mouse models of type 1 diabetes and multiple sclerosis. This discovery may offer new insights about mucosal-derived DC immunoregulation through SIgA opening new therapeutic approaches to autoimmune diseases.


Assuntos
Autoimunidade/imunologia , Moléculas de Adesão Celular/imunologia , Células Dendríticas/imunologia , Imunoglobulina A Secretora/imunologia , Lectinas Tipo C/imunologia , Receptores de Superfície Celular/imunologia , Animais , Células da Medula Óssea/imunologia , Diferenciação Celular/imunologia , Células Dendríticas/citologia , Citometria de Fluxo , Técnicas de Silenciamento de Genes , Humanos , Tolerância Imunológica/imunologia , Camundongos , Camundongos Endogâmicos C57BL
10.
Cell Mol Life Sci ; 70(2): 239-55, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22766971

RESUMO

Type 1 diabetes is an autoimmune disease characterized by the destruction of insulin-producing pancreatic ß-cells. Even though extensive scientific research has yielded important insights into the immune mechanisms involved in pancreatic ß-cell destruction, little is known about the events that trigger the autoimmune process. Recent epidemiological and experimental data suggest that environmental factors are involved in this process. In this review, we discuss the role of viruses as an environmental factor on the development of type 1 diabetes, and the immune mechanisms by which they can trigger or protect against this pathology.


Assuntos
Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/virologia , Infecções por Enterovirus/imunologia , Infecções por Enterovirus/virologia , Enterovirus/patogenicidade , Células Secretoras de Insulina/imunologia , Animais , Linfócitos B/imunologia , Diabetes Mellitus Tipo 1/etiologia , Diabetes Mellitus Tipo 1/genética , Humanos , Hipótese da Higiene , Células Secretoras de Insulina/virologia , Camundongos , Fatores de Risco , Fatores Socioeconômicos , Linfócitos T/imunologia
11.
J Scleroderma Relat Disord ; 9(1): 67-78, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38333523

RESUMO

Objective: Systemic sclerosis is an autoimmune disease characterized by fibrosis of the skin and internal organs including the lung. Mucosal-associated invariant T cells are innate-like T lymphocytes able to produce various cytokines and cytotoxic mediators such as granzyme B. A large body of evidence supports a role of mucosal-associated invariant T cells in autoimmune disease but more recent reports suggest also a potential role in fibrotic conditions. Therefore, we herein addressed the question as whether mucosal-associated invariant T cells may have an altered profile in systemic sclerosis. Methods: Mucosal-associated invariant T cell frequency was analyzed by flow cytometry, using fresh peripheral blood from 74 consecutive systemic sclerosis patients who were compared to 44 healthy donors. In addition, in-depth mucosal-associated invariant T cell phenotype and function were analyzed in unselected 29 women with systemic sclerosis who were compared to 23 healthy women donors. Results: Proportion of circulating mucosal-associated invariant T cells was significantly reduced by 68% in systemic sclerosis compared to healthy donors (0.78% in systemic sclerosis vs 2.5%, p < 0.0001). Within systemic sclerosis subsets, mucosal-associated invariant T cells were reduced in patients with interstitial lung disease (systemic sclerosis-interstitial lung disease) (0.56% vs 0.96% in patients without interstitial lung disease, p = 0.04). Moreover, in systemic sclerosis patients, mucosal-associated invariant T cells displayed an activated phenotype indicated by markedly increased CD69+ mucosal-associated invariant T cell frequency (20% mucosal-associated invariant T cell CD69+ compared to 9.4% in healthy donors, p = 0.0014). Interestingly, mucosal-associated invariant T cells from systemic sclerosis-interstitial lung disease patients had a more pronounced altered phenotype compared to systemic sclerosis without interstitial lung disease with a correlation between mucosal-associated invariant T cells expressing CCR6+ and mucosal-associated invariant T cell frequency (r = 0.8, p = 0.006). Conclusion: Circulating mucosal-associated invariant T cells were reduced and exhibited an activated phenotype in systemic sclerosis patients. This peripheral mucosal-associated invariant T cell deficiency may be related to enhanced apoptosis and/or homing in inflamed tissue, particularly in systemic sclerosis-interstitial lung disease patients.

12.
Kidney Int ; 84(2): 317-26, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23515052

RESUMO

Mast cell release of chymase is important in tissue remodeling and may participate in inflammation leading to fibrosis and organ failure. Here we analyzed the function of chymase in unilateral ureteral obstruction, an established accelerated model of renal tubulointerstitial fibrosis. Mice deficient in mouse mast cell protease 4 (mMCP4), the functional counterpart of human chymase, had increased obstruction-induced fibrosis when compared to wild-type mice indicating a protective effect of mMCP4. Engraftment of mast cell-deficient Kit(Wsh/Wsh) mice with wild type, but not mMCP4-deficient mast cells, restored protection confirming the role of mMCP4. Kidneys of mMCP4-deficient mice had higher levels of renal tubular damage, interstitial fibrosis, collagen deposition, increased α-smooth muscle actin, and decreased E-cadherin expression compared to the kidneys of wild-type mice. Further analysis showed an elevated inflammatory response in mMCP4-deficient mice with increased levels of kidney-infiltrating macrophages and T cells and local profibrotic TGF-ß1 and CCL2. Granulated and degranulated mast cells and mMCP4 were mainly found in the kidney capsule, respectively, before and after ureteral obstruction. Analysis of mMCP4 substrates showed that it mediates its anti-fibrotic actions by degrading interstitial deposits of fibronectin, a known promoter of inflammatory cell infiltration and adhesion. Thus, mast cell released mMCP4 has anti-fibrotic potential in acutely induced obstructive nephropathy.


Assuntos
Quimases/metabolismo , Nefropatias/prevenção & controle , Rim/enzimologia , Mastócitos/enzimologia , Serina Endopeptidases/metabolismo , Obstrução Ureteral/complicações , Actinas/metabolismo , Animais , Caderinas/metabolismo , Degranulação Celular , Quimiocina CCL2/metabolismo , Quimiotaxia , Quimases/deficiência , Quimases/genética , Colágeno/metabolismo , Modelos Animais de Doenças , Fibronectinas/metabolismo , Fibrose , Rim/imunologia , Rim/patologia , Nefropatias/enzimologia , Nefropatias/etiologia , Nefropatias/imunologia , Nefropatias/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Mastócitos/imunologia , Mastócitos/transplante , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miofibroblastos/metabolismo , Serina Endopeptidases/deficiência , Serina Endopeptidases/genética , Linfócitos T/imunologia , Linfócitos T/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Obstrução Ureteral/enzimologia , Obstrução Ureteral/imunologia , Obstrução Ureteral/patologia
13.
Med Sci (Paris) ; 29(8-9): 722-8, 2013.
Artigo em Francês | MEDLINE | ID: mdl-24005626

RESUMO

Type 1 diabetes is an autoimmune disease resulting from the destruction of pancreatic ß cells by the immune system. NKT cells are innate-like T cells that can exert potent immuno-regulatory functions. The regulatory role of NKT cells was initially proposed after the observed decreased frequency of this subset in mouse models of type 1 diabetes, as well as in patients developing various autoimmune pathologies. Increasing NKT cell frequency and function prevent the development of type 1 diabetes in mouse models. Several mechanisms including IL-4 and IL-10 production by NKT cells and the accumulation of tolerogenic dendritic cells are critical for the dampening of pathogenic anti-islet T cell responses by NKT cells. Importantly, these cells can at the same time prevent diabetes and promote efficient immune responses against infectious agents. These results strengthen the potential role of NKT cells as a key target for the development of therapeutic strategies against type 1 diabetes.


Assuntos
Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/prevenção & controle , Células Matadoras Naturais/imunologia , Animais , Apresentação de Antígeno/imunologia , Células Dendríticas/imunologia , Galactosilceramidas/uso terapêutico , Homeostase , Humanos , Tolerância Imunológica/imunologia , Interleucina-10/fisiologia , Interleucina-4/fisiologia , Camundongos , Viroses/imunologia
14.
Front Immunol ; 14: 1205405, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37885889

RESUMO

Introduction: Systemic lupus erythematosus (SLE) is an autoimmune disease in which circulating immune complexes can cause different types of glomerulonephritis, according to immune deposits and to the type of glomerular cell injury. Proliferative lesions represent the most severe form of lupus nephritis (LN) and often lead to kidney failure and death. Mucosal-associated invariant T (MAIT) cells are a subset of innate-like T cells that recognize microbial-derived ligands from the riboflavin synthesis pathway. Although abundant in peripheral blood, MAIT cells are enriched in mucosal and inflamed tissues. While previous studies have reported concordant results concerning lower MAIT cell frequencies in the blood of SLE patients, no information is known about MAIT cell function and LN severity and outcome. Methods: In the current study, we analyzed the baseline phenotype and function of peripheral blood MAIT cells by flow cytometry in 26 patients with LN and in a control group of 16 healthy individuals. Results: We observe that MAIT cell frequencies are markedly reduced in blood of LN patients. MAIT cells from patients have an altered phenotype in terms of migration, proliferation and differentiation markers, notably in most severe forms of LN. Frequencies of PMA/ionomycin stimulated MAIT cells secreting effector molecules, such as proinflammatory IL-17 and cytotoxic protein granzyme B, are higher in LN patients. Patients undergoing a complete renal remission after immunosuppressive therapy had higher MAIT cell frequency, lower expression of proliferation marker Ki-67 and granzyme B (GzB) at inclusion. Remarkably, GzB production defines a predictive model for complete remission. Discussion: We report here that blood MAIT cells display proinflammatory and cytotoxic function in severe lupus nephritis which may play a pathogenesis role, but without association with systemic lupus activity. Finally, low cytotoxic profile of MAIT cells may represent a promising prognostic factor of lupus nephritis remission one year after induction therapy.


Assuntos
Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Células T Invariantes Associadas à Mucosa , Humanos , Granzimas , Fenótipo , Gravidade do Paciente
15.
Eur J Immunol ; 41(12): 3574-85, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22002883

RESUMO

Invariant natural killer T (iNKT) cells are a distinct lineage of innate-like T lymphocytes and converging studies in mouse models have demonstrated the protective role of iNKT cells in the development of type 1 diabetes. Recently, a new subset of iNKT cells, producing high levels of the pro-inflammatory cytokine IL-17, has been identified (iNKT17 cells). Since this cytokine has been implicated in several autoimmune diseases, we have analyzed iNKT17 cell frequency, absolute number and phenotypes in the pancreas and lymphoid organs in non-obese diabetic (NOD) mice. The role of iNKT17 cells in the development of diabetes was investigated using transfer experiments. NOD mice exhibit a higher frequency and absolute number of iNKT17 cells in the lymphoid organs as compared with C57BL/6 mice. iNKT17 cells infiltrate the pancreas of NOD mice where they express IL-17 mRNA. Contrary to the protective role of CD4(+) iNKT cells, the CD4(-) iNKT cell population, which contains iNKT17 cells, enhances the incidence of diabetes. Treatment with a blocking anti-IL-17 antibody prevents the exacerbation of the disease. This study reveals that different iNKT cell subsets play distinct roles in the regulation of type 1 diabetes and iNKT17 cells, which are abundant in NOD mice, exacerbate diabetes development.


Assuntos
Diabetes Mellitus Tipo 1/imunologia , Interleucina-17/imunologia , Células T Matadoras Naturais/imunologia , Animais , Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Doenças Autoimunes/metabolismo , Antígenos CD4/imunologia , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Feminino , Interleucina-17/biossíntese , Interleucina-17/genética , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Células T Matadoras Naturais/metabolismo , Pâncreas/imunologia , Pâncreas/metabolismo , Fenótipo , RNA Mensageiro/genética
16.
Mol Metab ; 57: 101438, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35007789

RESUMO

OBJECTIVE: A common feature of metabolic diseases is their association with chronic low-grade inflammation. While enhanced gut permeability and systemic bacterial endotoxin translocation have been suggested as key players of this metaflammation, the mechanistic bases underlying these features upon the diabesity cascade remain partly understood. METHODS: Here, we show in mice that, independently of obesity, the induction of acute and global insulin resistance and associated hyperglycemia, upon treatment with an insulin receptor (IR) antagonist (S961), elicits gut hyperpermeability without triggering systemic inflammatory response. RESULTS: Of note, S961-treated diabetic mice display major defects of gut barrier epithelial functions, such as increased epithelial paracellular permeability and impaired cell-cell junction integrity. We also observed in these mice the early onset of a severe gut dysbiosis, as characterized by the bloom of pro-inflammatory Proteobacteria, and the later collapse of Paneth cells antimicrobial defense. Interestingly, S961 treatment discontinuation is sufficient to promptly restore both the gut microbial balance and the intestinal barrier integrity. Moreover, fecal transplant approaches further confirm that S961-mediated dybiosis contributes at least partly to the disruption of the gut selective epithelial permeability upon diabetic states. CONCLUSIONS: Together, our results highlight that insulin signaling is an indispensable gatekeeper of intestinal barrier integrity, acting as a safeguard against microbial imbalance and acute infections by enteropathogens.


Assuntos
Diabetes Mellitus Experimental , Microbioma Gastrointestinal , Resistência à Insulina , Animais , Disbiose/metabolismo , Disbiose/microbiologia , Microbioma Gastrointestinal/fisiologia , Inflamação/metabolismo , Camundongos
17.
J Exp Med ; 202(2): 239-48, 2005 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-16027237

RESUMO

Unlike conventional major histocompatibility complex-restricted T cells, Valpha14-Jalpha18 NKT cell lineage precursors engage in cognate interactions with CD 1 d-expressing bone marrow-derived cells that are both necessary and sufficient for their thymic selection and differentiation, but the nature and sequence of these interactions remain partially understood. After positive selection mediated by CD1d-expressing cortical thymocytes, the mature NKT cell lineage undergoes a series of changes suggesting antigen priming by a professional antigen-presenting cell, including extensive cell division, acquisition of a memory phenotype, the ability to produce interleukin-4 and interferon-gamma, and the expression of a panoply of NK receptors. By using a combined transgenic and chimeric approach to restrict CD1d expression to cortical thymocytes and to prevent expression on other hematopoietic cell types such as dendritic cells, macrophages, or B cells, we found that, to a large extent, expansion and differentiation events could be imparted by a single-cognate interaction with CD1d-expressing cortical thymocytes. These surprising findings suggest that, unlike thymic epithelial cells, cortical thymocytes can provide unexpected, cell type-specific signals leading to lineage expansion and NKT cell differentiation.


Assuntos
Antígenos CD1/imunologia , Diferenciação Celular/imunologia , Células Matadoras Naturais/imunologia , Linfócitos T/imunologia , Timo/imunologia , Animais , Apresentação de Antígeno/genética , Apresentação de Antígeno/imunologia , Antígenos CD1/genética , Antígenos CD1d , Linfócitos B/imunologia , Células da Medula Óssea/imunologia , Diferenciação Celular/genética , Proliferação de Células , Células Dendríticas/imunologia , Interleucina-4/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Timo/citologia
18.
J Immunol ; 181(4): 2321-9, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18684921

RESUMO

Invariant NKT cells are CD1d-restricted T cells specific for glycolipid Ags. Their activation or transgenic enrichment abrogates the development of experimental autoimmune encephalomyelitis (EAE). Herein, we demonstrate that in NKT-enriched mice the protection from EAE is associated with the infiltration of NKT cells in the CNS and the local expression of CD1d. This indicates that the CNS acquires the potential for local glycolipid presentation when exposed to inflammatory stress, permitting the triggering of NKT cells. To address the importance of CD1d-mediated Ag presentation, we used transgenic mice that express CD1d solely in the thymus. Interestingly, enrichment of NKT cells in these mice also conferred resistance to EAE, with an efficacy indistinguishable from that of NKT-enriched CD1d-sufficient mice. This protection was due to an abrogation of the encephalitogenic Th1 and Th17 response in the spleen, revealing that endogenous glycolipid presentation is dispensable for the regulatory function of NKT cells in EAE. Moreover, abrogating extrathymic CD1d expression failed to affect both the recruitment of NKT cells and their effector phenotype. CNS-infiltrating NKT cells were characterized by a cytotoxic IFN-gamma(high)IL-4(low)IL-10(low)granzyme B(high) profile, irrespective of the local expression of CD1d. Glycolipid Ag presentation is therefore dispensable for the control of autoimmune demyelination by NKT cells, underlining the importance of alternative cognate and/or soluble factors in the control of NKT cell function.


Assuntos
Antígenos CD1/fisiologia , Movimento Celular/imunologia , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/prevenção & controle , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/patologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/patologia , Sequência de Aminoácidos , Animais , Antígenos CD1/biossíntese , Antígenos CD1/genética , Antígenos CD1d , Técnicas de Cocultura , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/patologia , Humanos , Células Matadoras Naturais/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos Transgênicos , Dados de Sequência Molecular , Subpopulações de Linfócitos T/metabolismo
19.
Methods Mol Biol ; 2098: 283-297, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31792829

RESUMO

MAIT cells are unconventional T cells expressing a semi-invariant αß TCR, and they recognize bacterial metabolites via the highly conserved MR1 protein. MAIT cells interact with gut microbiota and literature reports alterations of gut homeostasis in type 1 diabetes (T1D), suggesting the involvement of MAIT cells in T1D. Since NOD mice is a well-established mouse model of T1D, MAIT cells were studied in these mice to evaluate their potential involvement in disease development. This chapter describes the material and methods required to characterize MAIT cells and to determine their function in T1D mouse models.


Assuntos
Diabetes Mellitus Tipo 1/metabolismo , Células T Invariantes Associadas à Mucosa/imunologia , Células T Invariantes Associadas à Mucosa/metabolismo , Animais , Biomarcadores , Separação Celular/métodos , Diabetes Mellitus Tipo 1/etiologia , Modelos Animais de Doenças , Suscetibilidade a Doenças , Citometria de Fluxo , Microbioma Gastrointestinal , Humanos , Imunofenotipagem , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos NOD , Especificidade de Órgãos/imunologia
20.
Nat Commun ; 11(1): 3755, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32709874

RESUMO

Obesity is associated with low-grade chronic inflammation promoting insulin-resistance and diabetes. Gut microbiota dysbiosis is a consequence as well as a driver of obesity and diabetes. Mucosal-associated invariant T cells (MAIT) are innate-like T cells expressing a semi-invariant T cell receptor restricted to the non-classical MHC class I molecule MR1 presenting bacterial ligands. Here we show that during obesity MAIT cells promote inflammation in both adipose tissue and ileum, leading to insulin resistance and impaired glucose and lipid metabolism. MAIT cells act in adipose tissue by inducing M1 macrophage polarization in an MR1-dependent manner and in the gut by inducing microbiota dysbiosis and loss of gut integrity. Both MAIT cell-induced tissue alterations contribute to metabolic dysfunction. Treatment with MAIT cell inhibitory ligand demonstrates its potential as a strategy against inflammation, dysbiosis and metabolic disorders.


Assuntos
Disbiose/imunologia , Inflamação/patologia , Intestinos/patologia , Células T Invariantes Associadas à Mucosa/patologia , Obesidade/metabolismo , Tecido Adiposo/patologia , Animais , Citocinas/genética , Citocinas/metabolismo , Dieta Hiperlipídica , Disbiose/complicações , Microbioma Gastrointestinal , Teste de Tolerância a Glucose , Íleo/patologia , Inflamação/complicações , Mucosa Intestinal/patologia , Intestinos/diagnóstico por imagem , Ligantes , Contagem de Linfócitos , Macrófagos/metabolismo , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/complicações , Obesidade/diagnóstico por imagem , Fenótipo , Pterinas/farmacologia , Receptores de Antígenos de Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA