Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Hered ; 115(1): 72-85, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38015800

RESUMO

Characterizing the mechanisms influencing the distribution of genetic variation in aquatic species can be difficult due to the dynamic nature of hydrological landscapes. In North America's Central Highlands, a complex history of glacial dynamics, long-term isolation, and secondary contact have shaped genetic variation in aquatic species. Although the effects of glacial history have been demonstrated in many taxa, responses are often lineage- or species-specific and driven by organismal ecology. In this study, we reconstruct the evolutionary history of a freshwater mussel species complex using a suite of mitochondrial and nuclear loci to resolve taxonomic and demographic uncertainties. Our findings do not support Pleurobema rubrum as a valid species, which is proposed for listing as threatened under the U.S. Endangered Species Act. We synonymize P. rubrum under Pleurobema sintoxia-a common and widespread species found throughout the Mississippi River Basin. Further investigation of patterns of genetic variation in P. sintoxia identified a complex demographic history, including ancestral vicariance and secondary contact, within the Eastern Highlands. We hypothesize these patterns were shaped by ancestral vicariance driven by the formation of Lake Green and subsequent secondary contact after the last glacial maximum. Our inference aligns with demographic histories observed in other aquatic taxa in the region and mirrors patterns of genetic variation of a freshwater fish species (Erimystax dissimilis) confirmed to serve as a parasitic larval host for P. sintoxia. Our findings directly link species ecology to observed patterns of genetic variation and may have significant implications for future conservation and recovery actions of freshwater mussels.


Assuntos
Bivalves , DNA Mitocondrial , Animais , DNA Mitocondrial/genética , Espécies em Perigo de Extinção , Bivalves/genética , Lagos , Demografia , Filogenia , Variação Genética
2.
J Vis Exp ; (152)2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31633689

RESUMO

Actively monitoring the timing, development, and reproductive patterns of endangered species is critical when managing for population recovery. Freshwater mussels are among the most imperiled organisms in the world, but information about early larval (glochidial) development and brooding periods is still lacking for many species. Previous studies have focused on the complex life history stage when female mussels are ready to parasitize host fish, but few studies have focused on the brooding period and timing of larval development. The protocol described here allows researchers to non-lethally evaluate the state of gravidity for female mussels. The results of this study show that this method does not affect a female mussel's ability to stay gravid or become gravid again after sampling has been performed. The advantage of this method may permit its use on federally threatened or endangered species or other populations of high conservation concern. This protocol can be adapted for use on both preserved or live individuals and was tested on a variety of mussel species. The database provided is a repository for a breadth of information on timing of reproductive habits and will facilitate future freshwater mussel research, conservation, and recovery efforts.


Assuntos
Bivalves/química , Água Doce/química , Larva/química , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA