Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(14): e202316496, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38348945

RESUMO

Brachyury is an oncogenic transcription factor whose overexpression drives chordoma growth. The downmodulation of brachyury in chordoma cells has demonstrated therapeutic potential, however, as a transcription factor it is classically deemed "undruggable". Given that direct pharmacological intervention against brachyury has proven difficult, attempts at intervention have instead targeted upstream kinases. Recently, afatinib, an FDA-approved kinase inhibitor, has been shown to modulate brachyury levels in multiple chordoma cell lines. Herein, we use afatinib as a lead to undertake a structure-based drug design approach, aided by mass-spectrometry and X-ray crystallography, to develop DHC-156, a small molecule that more selectively binds brachyury and downmodulates it as potently as afatinib. We eliminated kinase-inhibition from this novel scaffold while demonstrating that DHC-156 induces the post-translational downmodulation of brachyury that results in an irreversible impairment of chordoma tumor cell growth. In doing so, we demonstrate the feasibility of direct brachyury modulation, which may further be developed into more potent tool compounds and therapies.


Assuntos
Cordoma , Proteínas Fetais , Fatores de Transcrição , Humanos , Fatores de Transcrição/metabolismo , Cordoma/tratamento farmacológico , Cordoma/metabolismo , Cordoma/patologia , Afatinib , Proteínas com Domínio T/metabolismo
2.
J Neurochem ; 142(6): 934-947, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28670737

RESUMO

Brain accumulation of soluble oligomers of the amyloid-ß peptide (AßOs) is increasingly considered a key early event in the pathogenesis of Alzheimer's disease (AD). A variety of AßO species have been identified, both in vitro and in vivo, ranging from dimers to 24mers and higher order oligomers. However, there is no consensus in the literature regarding which AßO species are most germane to AD pathogenesis. Antibodies capable of specifically recognizing defined subpopulations of AßOs would be a valuable asset in the identification, isolation, and characterization of AD-relevant AßO species. Here, we report the characterization of a human single chain antibody fragment (scFv) denoted NUsc1, one of a number of scFvs we have identified that stringently distinguish AßOs from both monomeric and fibrillar Aß. NUsc1 readily detected AßOs previously bound to dendrites in cultured hippocampal neurons. In addition, NUsc1 blocked AßO binding and reduced AßO-induced neuronal oxidative stress and tau hyperphosphorylation in cultured neurons. NUsc1 further distinguished brain extracts from AD-transgenic mice from wild type (WT) mice, and detected endogenous AßOs in fixed AD brain tissue and AD brain extracts. Biochemical analyses indicated that NUsc1 targets a subpopulation of AßOs with apparent molecular mass greater than 50 kDa. Results indicate that NUsc1 targets a particular AßO species relevant to AD pathogenesis, and suggest that NUsc1 may constitute an effective tool for AD diagnostics and therapeutics.

3.
Front Neurosci ; 15: 768646, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35046767

RESUMO

Improvements have been made in the diagnosis of Alzheimer's disease (AD), manifesting mostly in the development of in vivo imaging methods that allow for the detection of pathological changes in AD by magnetic resonance imaging (MRI) and positron emission tomography (PET) scans. Many of these imaging methods, however, use agents that probe amyloid fibrils and plaques-species that do not correlate well with disease progression and are not present at the earliest stages of the disease. Amyloid ß oligomers (AßOs), rather, are now widely accepted as the Aß species most germane to AD onset and progression. Here we report evidence further supporting the role of AßOs as pathological instigators of AD and introduce promising anti-AßO diagnostic probes capable of distinguishing the 5xFAD mouse model from wild type mice by PET and MRI. In a developmental study, Aß oligomers in 5xFAD mice were found to appear at 3 months of age, just prior to the onset of memory dysfunction, and spread as memory worsened. The increase of AßOs is prominent in the subiculum and correlates with concomitant development of reactive astrocytosis. The impact of these AßOs on memory is in harmony with findings that intraventricular injection of synthetic AßOs into wild type mice induced hippocampal dependent memory dysfunction within 24 h. Compelling support for the conclusion that endogenous AßOs cause memory loss was found in experiments showing that intranasal inoculation of AßO-selective antibodies into 5xFAD mice completely restored memory function, measured 30-40 days post-inoculation. These antibodies, which were modified to give MRI and PET imaging probes, were able to distinguish 5xFAD mice from wild type littermates. These results provide strong support for the role of AßOs in instigating memory loss and salient AD neuropathology, and they demonstrate that AßO selective antibodies have potential both for therapeutics and for diagnostics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA