RESUMO
Introduction: The 5xFAD mouse is a popular model of familial Alzheimer's disease (AD) that is characterized by early beta-amyloid (Aß) deposition and cognitive decrements. Despite numerous studies, the 5xFAD mouse has not been comprehensively phenotyped for vascular and metabolic perturbations over its lifespan. Methods: Male and female 5xFAD and wild type (WT) littermates underwent in vivo 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) imaging at 4, 6, and 12 months of age to assess regional glucose metabolism. A separate cohort of mice (4, 8, 12 months) underwent "vessel painting" which labels all cerebral vessels and were analyzed for vascular characteristics such as vessel density, junction density, vessel length, network complexity, number of collaterals, and vessel diameter. Results: With increasing age, vessels on the cortical surface in both 5xFAD and WT mice showed increased vessel length, vessel and junction densities. The number of collateral vessels between the middle cerebral artery (MCA) and the anterior and posterior cerebral arteries decreased with age but collateral diameters were significantly increased only in 5xFAD mice. MCA total vessel length and junction density were decreased in 5xFAD mice compared to WT at 4 months. Analysis of 18F-FDG cortical uptake revealed significant differences between WT and 5xFAD mice spanning 4-12 months. Broadly, 5xFAD males had significantly increased 18F-FDG uptake at 12 months compared to WT mice. In most cortical regions, female 5xFAD mice had reduced 18F-FDG uptake compared to WT across their lifespan. Discussion: While the 5xFAD mouse exhibits AD-like cognitive deficits as early as 4 months of age that are associated with increasing Aß deposition, we only found significant differences in cortical vascular features in males, not in females. Interestingly, 5xFAD male and female mice exhibited opposite effects in 18F-FDG uptake. The MCA supplies blood to large portions of the somatosensory cortex and portions of motor and visual cortex and increased vessel length alongside decreased collaterals which coincided with higher metabolic rates in 5xFAD mice. Thus, a potential mismatch between metabolic demand and vascular delivery of nutrients in the face of increasing Aß deposition could contribute to the progressive cognitive deficits seen in the 5xFAD mouse model.
RESUMO
Chemotherapy-induced cognitive dysfunction (chemobrain) is an important adverse sequela of chemotherapy. Chemobrain has been identified by the National Cancer Institute as a poorly understood problem for which current management or treatment strategies are limited or ineffective. Here, we show that chemotherapy treatment with doxorubicin (DOX) in a breast cancer mouse model induced protein kinase A (PKA) phosphorylation of the neuronal ryanodine receptor/calcium (Ca2+) channel type 2 (RyR2), RyR2 oxidation, RyR2 nitrosylation, RyR2 calstabin2 depletion, and subsequent RyR2 Ca2+ leakiness. Chemotherapy was furthermore associated with abnormalities in brain glucose metabolism and neurocognitive dysfunction in breast cancer mice. RyR2 leakiness and cognitive dysfunction could be ameliorated by treatment with a small molecule Rycal drug (S107). Chemobrain was also found in noncancer mice treated with DOX or methotrexate and 5-fluorouracil and could be prevented by treatment with S107. Genetic ablation of the RyR2 PKA phosphorylation site (RyR2-S2808A) also prevented the development of chemobrain. Chemotherapy increased brain concentrations of the tumor necrosis factor-α and transforming growth factor-ß signaling, suggesting that increased inflammatory signaling might contribute to oxidation-driven biochemical remodeling of RyR2. Proteomics and Gene Ontology analysis indicated that the signaling downstream of chemotherapy-induced leaky RyR2 was linked to the dysregulation of synaptic structure-associated proteins that are involved in neurotransmission. Together, our study points to neuronal Ca2+ dyshomeostasis via leaky RyR2 channels as a potential mechanism contributing to chemobrain, warranting further translational studies.
Assuntos
Antineoplásicos , Comprometimento Cognitivo Relacionado à Quimioterapia , Disfunção Cognitiva , Animais , Camundongos , Canal de Liberação de Cálcio do Receptor de Rianodina , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Encéfalo , Doxorrubicina/efeitos adversosRESUMO
Vascular contributions to cognitive impairment and dementia (VCID) particularly Alzheimer's disease and related dementias (ADRDs) are increasing; however, mechanisms driving cerebrovascular decline are poorly understood. Methylenetetrahydrofolate reductase (MTHFR) is a critical enzyme in the folate and methionine cycles. Variants in MTHFR, notably 677 C > T, are associated with dementias, but no mouse model existed to identify mechanisms by which MTHFR677C > T increases risk. Therefore, MODEL-AD created a novel knock-in (KI) strain carrying the Mthfr677C > T allele on the C57BL/6J background (Mthfr677C > T) to characterize morphology and function perturbed by the variant. Consistent with human clinical data, Mthfr677C > T mice have reduced enzyme activity in the liver and elevated plasma homocysteine levels. MTHFR enzyme activity is also reduced in the Mthfr677C > T brain. Mice showed reduced tissue perfusion in numerous brain regions by PET/CT as well as significantly reduced vascular density, pericyte number and increased GFAP-expressing astrocytes in frontal cortex. Electron microscopy revealed cerebrovascular damage including endothelial and pericyte apoptosis, reduced luminal size, and increased astrocyte and microglial presence in the microenvironment. Collectively, these data support a mechanism by which variations in MTHFR perturb cerebrovascular health laying the foundation to incorporate our new Mthfr677C > T mouse model in studies examining genetic susceptibility for cerebrovascular dysfunction in ADRDs.
Assuntos
Metilenotetra-Hidrofolato Redutase (NADPH2) , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Camundongos , Animais , Humanos , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Camundongos Endogâmicos C57BL , Ácido Fólico , Predisposição Genética para Doença , GenótipoRESUMO
Introduction: Hyperexcitability and epileptiform activity are commonplace in Alzheimer's disease (AD) patients and associated with impaired cognitive function. The anti-seizure drug levetiracetam (LEV) is currently being evaluated in clinical trials for ability to reduce epileptiform activity and improve cognitive function in AD. The purpose of our studies was to establish a pharmacokinetic/pharmacodynamic (PK/PD) relationship with LEV in an amyloidogenic mouse model of AD to enable predictive preclinical to clinical translation, using the rigorous preclinical testing pipeline of the Model Organism Development and Evaluation for Late-Onset Alzheimer's Disease Preclinical Testing Core. Methods: A multi-tier approach was applied that included quality assurance and quality control of the active pharmaceutical ingredient, PK/PD modeling, positron emission tomography/magnetic resonance imaging (PET/MRI), functional outcomes, and transcriptomics. 5XFAD mice were treated chronically with LEV for 3 months at doses in line with those allometrically scaled to the clinical dose range. Results: Pharmacokinetics of LEV demonstrated sex differences in Cmax, AUC0-∞, and CL/F, and a dose dependence in AUC0-∞. After chronic dosing at 10, 30, 56 mg/kg, PET/MRI tracer 18F-AV45, and 18F-fluorodeoxyglucose (18F-FDG) showed specific regional differences with treatment. LEV did not significantly improve cognitive outcomes. Transcriptomics performed by nanoString demonstrated drug- and dose-related changes in gene expression relevant to human brain regions and pathways congruent with changes in 18F-FDG uptake. Discussion: This study represents the first report of PK/PD assessment of LEV in 5XFAD mice. Overall, these results highlighted non-linear kinetics based on dose and sex. Plasma concentrations of the 10 mg/kg dose in 5XFAD overlapped with human plasma concentrations used for studies of mild cognitive impairment, while the 30 and 56 mg/kg doses were reflective of doses used to treat seizure activity. Post-treatment gene expression analysis demonstrated LEV dose-related changes in immune function and neuronal-signaling pathways relevant to human AD, and aligned with regional 18F-FDG uptake. Overall, this study highlights the importance of PK/PD relationships in preclinical studies to inform clinical study design. Highlights: Significant sex differences in pharmacokinetics of levetiracetam were observed in 5XFAD mice.Plasma concentrations of 10 mg/kg levetiracetam dose in 5XFAD overlapped with human plasma concentration used in the clinic.Drug- and dose-related differences in gene expression relevant to human brain regions and pathways were also similar to brain region-specific changes in 18F-fluorodeoxyglucose uptake.
RESUMO
Obesity is recognized as a significant risk factor for Alzheimer's disease (AD). Studies have supported the notion that obesity accelerates AD-related pathophysiology in mouse models of AD. The majority of studies, to date, have focused on the use of early-onset AD models. Here, we evaluate the impact of genetic risk factors on late-onset AD (LOAD) in mice fed with a high fat/high sugar diet (HFD). We focused on three mouse models created through the IU/JAX/PITT MODEL-AD Center. These included a combined risk model with APOE4 and a variant in triggering receptor expressed on myeloid cells 2 (Trem2R47H ). We have termed this model, LOAD1. Additional variants including the M28L variant in phospholipase C Gamma 2 (Plcg2M28L ) and the 677C > T variant in methylenetetrahydrofolate reductase (Mthfr 677C > T ) were engineered by CRISPR onto LOAD1 to generate LOAD1.Plcg2M28L and LOAD1.Mthfr 677C > T . At 2 months of age, animals were placed on an HFD that induces obesity or a control diet (CD), until 12 months of age. Throughout the study, blood was collected to assess the levels of cholesterol and glucose. Positron emission tomography/computed tomography (PET/CT) was completed prior to sacrifice to image for glucose utilization and brain perfusion. After the completion of the study, blood and brains were collected for analysis. As expected, animals fed a HFD, showed a significant increase in body weight compared to those fed a CD. Glucose increased as a function of HFD in females only with cholesterol increasing in both sexes. Interestingly, LOAD1.Plcg2M28L demonstrated an increase in microglia density and alterations in regional brain glucose and perfusion on HFD. These changes were not observed in LOAD1 or LOAD1.Mthfr 677C > T animals fed with HFD. Furthermore, LOAD1.Plcg2M28L but not LOAD1.Mthfr 677C > T or LOAD1 animals showed transcriptomics correlations with human AD modules. Our results show that HFD affects the brain in a genotype-specific manner. Further insight into this process may have significant implications for the development of lifestyle interventions for the treatment of AD.
RESUMO
Introduction: Alzheimer's disease (AD) is the most common form of dementia. Beta-secretase (BACE) inhibitors have been proposed as potential therapeutic interventions; however, initiating treatment once disease has significantly progressed has failed to effectively stop or treat disease. Whether BACE inhibition may have efficacy when administered prophylactically in the early stages of AD has been under-investigated. The present studies aimed to evaluate prophylactic treatment of the BACE inhibitor verubecestat in an AD mouse model using the National Institute on Aging (NIA) resources of the Model Organism Development for Late-Onset Alzheimer's Disease (MODEL-AD) Preclinical Testing Core (PTC) Drug Screening Pipeline. Methods: 5XFAD mice were administered verubecestat ad libitum in chow from 3 to 6 months of age, prior to the onset of significant disease pathology. Following treatment (6 months of age), in vivo imaging was conducted with 18F-florbetapir (AV-45/Amyvid) (18F-AV45) and 18-FDG (fluorodeoxyglucose)-PET (positron emission tomography)/MRI (magnetic resonance imaging), brain and plasma amyloid beta (Aß) were measured, and the clinical and behavioral characteristics of the mice were assessed and correlated with the pharmacokinetic data. Results: Prophylactic verubecestat treatment resulted in dose- and region-dependent attenuations of 18F-AV45 uptake in male and female 5XFAD mice. Plasma Aß40 and Aß42 were also dose-dependently attenuated with treatment. Across the dose range evaluated, side effects including coat color changes and motor alterations were reported, in the absence of cognitive improvement or changes in 18F-FDG uptake. Discussion: Prophylactic treatment with verubecestat resulted in attenuated amyloid plaque deposition when treatment was initiated prior to significant pathology in 5XFAD mice. At the same dose range effective at attenuating Aß levels, verubecestat produced side effects in the absence of improvements in cognitive function. Taken together these data demonstrate the rigorous translational approaches of the MODEL-AD PTC for interrogating potential therapeutics and provide insight into the limitations of verubecestat as a prophylactic intervention for early-stage AD.
RESUMO
BACKGROUND: Lead (Pb) is an environmental factor has been suspected of contributing to the dementia including Alzheimer's disease (AD). Our previous studies have shown that Pb exposure at the subtoxic dose increased brain levels of beta-amyloid (Aß) and amyloid plaques, a pathological hallmark for AD, in amyloid precursor protein (APP) transgenic mice, and is hypothesized to inhibit Aß clearance in the blood- cerebrospinal fluid (CSF) barrier. However, it remains unclear how different levels of Pb affect Aß clearance in the whole blood-brain barrier system. This study was designed to investigate whether chronic exposure of Pb affected the permeability of the blood-brain barrier system by using the Dynamic Contrast-Enhanced Computerized Tomography (DCE-CT) method. METHODS: DEC-CT was used to investigate whether chronic exposure of toxic Pb affected the permeability of the real-time blood brain barrier system. RESULTS: Data showed that Pb exposure increased permeability surface area product, and also significantly induced brain perfusion. However, Pb exposure did not alter extracellular volumes or fractional blood volumes of mouse brain. CONCLUSION: Our data suggest that Pb exposure at subtoxic and toxic levels directly targets the brain vasculature and damages the blood brain barrier system.
Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Chumbo/toxicidade , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Camundongos , Camundongos TransgênicosRESUMO
BACKGROUND: Subcutaneous nerve stimulation (ScNS) damages the stellate ganglion and improves rhythm control of atrial fibrillation (AF) in ambulatory dogs. OBJECTIVE: The purpose of this study was to test the hypothesis that thoracic ScNS can improve rate control in persistent AF. METHODS: We created persistent AF in 13 dogs and randomly assigned them to ScNS (n = 6) and sham control (n = 7) groups. 18F-2-Fluoro-2-deoxyglucose positron emission tomography/magnetic resonance imaging of the brain stem was performed at baseline and at the end of the study. RESULTS: The average stellate ganglion nerve activity reduced from 4.00 ± 1.68 µV after the induction of persistent AF to 1.72 ± 0.42 µV (P = .032) after ScNS. In contrast, the average stellate ganglion nerve activity increased from 3.01 ± 1.26 µV during AF to 5.52 ± 2.69 µV after sham stimulation (P = .023). The mean ventricular rate during persistent AF reduced from 149 ± 36 to 84 ± 16 beats/min (P = .011) in the ScNS group, but no changes were observed in the sham control group. The left ventricular ejection fraction remained unchanged in the ScNS group but reduced significantly in the sham control group. Immunostaining showed damaged ganglion cells in bilateral stellate ganglia and increased brain stem glial cell reaction in the ScNS group but not in the control group. The 18F-2-fluoro-2-deoxyglucose uptake in the pons and medulla was significantly (P = .011) higher in the ScNS group than the sham control group at the end of the study. CONCLUSION: Thoracic ScNS causes neural remodeling in the brain stem and stellate ganglia, controls the ventricular rate, and preserves the left ventricular ejection fraction in ambulatory dogs with persistent AF.