Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
2.
Cell Rep ; 43(8): 114572, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39116202

RESUMO

Antibiotics cause collateral damage to resident microbes that is associated with various health risks. To date, studies have largely focused on the impacts of antibiotics on large intestinal and fecal microbiota. Here, we employ a gastrointestinal (GI) tract-wide integrated multiomic approach to show that amoxicillin (AMX) treatment reduces bacterial abundance, bile salt hydrolase activity, and unconjugated bile acids in the small intestine (SI). Losses of fatty acids (FAs) and increases in acylcarnitines in the large intestine (LI) correspond with spatially distinct expansions of Proteobacteria. Parasutterella excrementihominis engage in FA biosynthesis in the SI, while multiple Klebsiella species employ FA oxidation during expansion in the LI. We subsequently demonstrate that restoration of unconjugated bile acids can mitigate losses of commensals in the LI while also inhibiting the expansion of Proteobacteria during AMX treatment. These results suggest that the depletion of bile acids and lipids may contribute to AMX-induced dysbiosis in the lower GI tract.


Assuntos
Amoxicilina , Ácidos e Sais Biliares , Ácidos e Sais Biliares/metabolismo , Animais , Amoxicilina/farmacologia , Camundongos , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Antibacterianos/farmacologia , Proteobactérias/metabolismo , Proteobactérias/efeitos dos fármacos , Ácidos Graxos/metabolismo , Masculino , Microbiota/efeitos dos fármacos
3.
Microbiol Spectr ; 11(4): e0237623, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37439681

RESUMO

Antibiotic-induced gut microbiome dysbiosis (AID) is known to be influenced by host dietary composition. However, how and when diet modulates gut dysbiosis remains poorly characterized. Thus, here, we utilize a multi-omics approach to characterize how a diet supplemented with oats, a rich source of microbiota-accessible carbohydrates, or dextrose impacts amoxicillin-induced changes to gut microbiome structure and transcriptional activity. We demonstrate that oat administration during amoxicillin challenge provides greater protection from AID than the always oats or recovery oats diet groups. In particular, the group in which oats were provided at the time of antibiotic exposure induced the greatest protection against AID while the other oat diets saw greater effects after amoxicillin challenge. The oat diets likewise reduced amoxicillin-driven elimination of Firmicutes compared to the dextrose diet. Functionally, gut communities fed dextrose were carbohydrate starved and favored respiratory metabolism and consequent metabolic stress management while oat-fed communities shifted their transcriptomic profile and emphasized antibiotic stress management. The metabolic trends were exemplified when assessing transcriptional activity of the following two common gut commensal bacteria: Akkermansia muciniphila and Bacteroides thetaiotaomicron. These findings demonstrate that while host diet is important in shaping how antibiotics effect the gut microbiome composition and function, diet timing may play an even greater role in dietary intervention-based therapeutics. IMPORTANCE We utilize a multi-omics approach to demonstrate that diets supplemented with oats, a rich source of microbiota-accessible carbohydrates, are able to confer protection against antibiotic-induced dysbiosis (AID). Our findings affirm that not only is host diet important in shaping antibiotics effects on gut microbiome composition and function but also that the timing of these diets may play an even greater role in managing AID. This work provides a nuanced perspective on dietary intervention against AID and may be informative on preventing AID during routine antibiotic treatment.


Assuntos
Antibacterianos , Avena , Antibacterianos/efeitos adversos , Disbiose/induzido quimicamente , Disbiose/prevenção & controle , Carboidratos , Amoxicilina , Glucose
4.
G3 (Bethesda) ; 11(2)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33585874

RESUMO

Several Candida species can undergo a heritable and reversible transition from a 'white' state to a mating proficient 'opaque' state. This ability relies on highly interconnected transcriptional networks that control cell-type-specific gene expression programs over multiple generations. Candida albicans, the most prominent pathogenic Candida species, provides a well-studied paradigm for the white-opaque transition. In this species, a network of at least eight transcriptional regulators controls the balance between white and opaque states that have distinct morphologies, transcriptional profiles, and physiological properties. Given the reversible nature and the high frequency of white-opaque transitions, it is widely assumed that this switch is governed by epigenetic mechanisms that occur independently of any changes in DNA sequence. However, a direct genomic comparison between white and opaque cells has yet to be performed. Here, we present a whole-genome comparative analysis of C. albicans white and opaque cells. This analysis revealed rare genetic changes between cell states, none of which are linked to white-opaque switching. This result is consistent with epigenetic mechanisms controlling cell state differentiation in C. albicans and provides direct evidence against a role for genetic variation in mediating the switch.


Assuntos
Candida albicans , Regulação Fúngica da Expressão Gênica , Candida albicans/genética , Epigênese Genética , Proteínas Fúngicas , Redes Reguladoras de Genes , Genômica , Fenótipo
5.
PLoS One ; 13(9): e0201915, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30183704

RESUMO

Pseudogymnoascus destructans is the fungal pathogen responsible for White-nose Syndrome (WNS), a disease that has killed millions of bats in North America over the last decade. A major obstacle to research on P. destructans has been the lack of a tractable infection model for monitoring virulence. Here, we establish a high-throughput model of infection using larvae of Galleria mellonella, an invertebrate used to study host-pathogen interactions for a wide range of microbial species. We demonstrate that P. destructans can kill G. mellonella larvae in an inoculum-dependent manner when infected larvae are housed at 13°C or 18°C. Larval killing is an active process, as heat-killed P. destructans spores caused significantly decreased levels of larval death compared to live spores. We also show that fungal spores that were germinated prior to inoculation were able to kill larvae 3-4 times faster than non-germinated spores. Lastly, we identified chemical inhibitors of P. destructans and used G. mellonella to evaluate these inhibitors for their ability to reduce virulence. We demonstrate that amphotericin B can effectively block larval killing by P. destructans and thereby establish that this infection model can be used to screen biocontrol agents against this fungal pathogen.


Assuntos
Ascomicetos/patogenicidade , Quirópteros/microbiologia , Insetos/microbiologia , Mariposas/microbiologia , Micoses/veterinária , Anfotericina B/farmacologia , Animais , Antifúngicos/farmacologia , Ascomicetos/efeitos dos fármacos , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Temperatura Alta , Larva/microbiologia , Micoses/microbiologia , América do Norte , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/patogenicidade , Síndrome , Virulência/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA