Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 84(8): 1556-1569.e10, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38503285

RESUMO

Cells respond to lysosomal membrane permeabilization by membrane repair or selective macroautophagy of damaged lysosomes, termed lysophagy, but it is not fully understood how this decision is made. Here, we uncover a pathway in human cells that detects lipid bilayer perturbations in the limiting membrane of compromised lysosomes, which fail to be repaired, and then initiates ubiquitin-triggered lysophagy. We find that SPG20 binds the repair factor IST1 on damaged lysosomes and, importantly, integrates that with the detection of damage-associated lipid-packing defects of the lysosomal membrane. Detection occurs via sensory amphipathic helices in SPG20 before rupture of the membrane. If lipid-packing defects are extensive, such as during lipid peroxidation, SPG20 recruits and activates ITCH, which marks the damaged lysosome with lysine-63-linked ubiquitin chains to initiate lysophagy and thus triages the lysosome for destruction. With SPG20 being linked to neurodegeneration, these findings highlight the relevance of a coordinated lysosomal damage response for cellular homeostasis.


Assuntos
Lisossomos , Macroautofagia , Humanos , Autofagia/fisiologia , Membranas Intracelulares/metabolismo , Lipídeos , Lisossomos/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo
2.
Mol Cell ; 82(8): 1408-1410, 2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35452612

RESUMO

To elucidate the mechanism driving selective autophagy of protein aggregates, or "aggrephagy," Ma et al. (2022) identify chaperonin TRiC subunit CCT2 as a receptor that specifically promotes the clearance of solid aggregates, but not liquid-like condensates, in a ubiquitin-independent manner.


Assuntos
Resíduos Sólidos , Ubiquitina , Autofagia , Proteínas de Transporte/metabolismo , Agregados Proteicos , Ubiquitina/metabolismo
3.
Mol Cell ; 82(14): 2633-2649.e7, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35793674

RESUMO

Lysosomal membrane permeabilization (LMP) is an underlying feature of diverse conditions including neurodegeneration. Cells respond by extensive ubiquitylation of membrane-associated proteins for clearance of the organelle through lysophagy that is facilitated by the ubiquitin-directed AAA-ATPase VCP/p97. Here, we assessed the ubiquitylated proteome upon acute LMP and uncovered a large diversity of targets and lysophagy regulators. They include calponin-2 (CNN2) that, along with the Arp2/3 complex, translocates to damaged lysosomes and regulates actin filaments to drive phagophore formation. Importantly, CNN2 needs to be ubiquitylated during the process and removed by VCP/p97 for efficient lysophagy. Moreover, we identified the small heat shock protein HSPB1 that assists VCP/p97 in the extraction of CNN2 and show that other membrane regulators including SNAREs, PICALM, AGFG1, and ARL8B are ubiquitylated during lysophagy. Our data reveal a framework of how ubiquitylation and two effectors, VCP/p97 and HSPB1, cooperate to protect cells from the deleterious effects of LMP.


Assuntos
Macroautofagia , Ubiquitina , Actinas/metabolismo , Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Lisossomos/metabolismo , Ubiquitina/metabolismo , Proteína com Valosina/genética , Proteína com Valosina/metabolismo
4.
Mol Cell ; 81(6): 1337-1354.e8, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33545068

RESUMO

Autophagy deficiency in fed conditions leads to the formation of protein inclusions highlighting the contribution of this lysosomal delivery route to cellular proteostasis. Selective autophagy pathways exist that clear accumulated and aggregated ubiquitinated proteins. Receptors for this type of autophagy (aggrephagy) include p62, NBR1, TOLLIP, and OPTN, which possess LC3-interacting regions and ubiquitin-binding domains (UBDs), thus working as a bridge between LC3/GABARAP proteins and ubiquitinated substrates. However, the identity of aggrephagy substrates and the redundancy of aggrephagy and related UBD-containing receptors remains elusive. Here, we combined proximity labeling and organelle enrichment with quantitative proteomics to systematically map the autophagic degradome targeted by UBD-containing receptors under basal and proteostasis-challenging conditions in human cell lines. We identified various autophagy substrates, some of which were differentially engulfed by autophagosomal and endosomal membranes via p62 and TOLLIP, respectively. Overall, this resource will allow dissection of the proteostasis contribution of autophagy to numerous individual proteins.


Assuntos
Autofagossomos , Autofagia , Mapas de Interação de Proteínas , Proteólise , Proteostase , Ubiquitinação , Autofagossomos/genética , Autofagossomos/metabolismo , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Células HEK293 , Células HeLa , Humanos , Proteômica
5.
Mol Cell ; 81(9): 2013-2030.e9, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33773106

RESUMO

The sequestration of damaged mitochondria within double-membrane structures termed autophagosomes is a key step of PINK1/Parkin mitophagy. The ATG4 family of proteases are thought to regulate autophagosome formation exclusively by processing the ubiquitin-like ATG8 family (LC3/GABARAPs). We discover that human ATG4s promote autophagosome formation independently of their protease activity and of ATG8 family processing. ATG4 proximity networks reveal a role for ATG4s and their proximity partners, including the immune-disease protein LRBA, in ATG9A vesicle trafficking to mitochondria. Artificial intelligence-directed 3D electron microscopy of phagophores shows that ATG4s promote phagophore-ER contacts during the lipid-transfer phase of autophagosome formation. We also show that ATG8 removal during autophagosome maturation does not depend on ATG4 activity. Instead, ATG4s can disassemble ATG8-protein conjugates, revealing a role for ATG4s as deubiquitinating-like enzymes. These findings establish non-canonical roles of the ATG4 family beyond the ATG8 lipidation axis and provide an AI-driven framework for rapid 3D electron microscopy.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Autofagossomos/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Cisteína Endopeptidases/metabolismo , Metabolismo dos Lipídeos , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/genética , Inteligência Artificial , Autofagossomos/genética , Autofagossomos/ultraestrutura , Família da Proteína 8 Relacionada à Autofagia/genética , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/genética , Cisteína Endopeptidases/genética , Células HEK293 , Células HeLa , Humanos , Imageamento Tridimensional , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Microscopia Eletrônica de Transmissão , Proteínas Associadas aos Microtúbulos/genética , Mitocôndrias/genética , Mitocôndrias/ultraestrutura , Mitofagia , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Transporte Proteico , Transdução de Sinais , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
6.
Mol Cell ; 78(3): 379-381, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32386541

RESUMO

Fujioka et al. (2020) uncovered liquid-liquid phase separation of the PAS, a key driver of autophagosome formation in yeast. Moreover, the authors demonstrated that liquid-like PAS controls autophagic kinase activation and is itself regulated by the phosphorylation status of its constituents.


Assuntos
Autofagia , Proteínas de Saccharomyces cerevisiae , Autofagossomos , Proteínas Relacionadas à Autofagia , Saccharomyces cerevisiae
7.
Mol Cell ; 77(5): 951-969.e9, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-31995728

RESUMO

AMPK is a central regulator of metabolism and autophagy. Here we show how lysosomal damage activates AMPK. This occurs via a hitherto unrecognized signal transduction system whereby cytoplasmic sentinel lectins detect membrane damage leading to ubiquitination responses. Absence of Galectin 9 (Gal9) or loss of its capacity to recognize lumenal glycans exposed during lysosomal membrane damage abrogate such ubiquitination responses. Proteomic analyses with APEX2-Gal9 have revealed global changes within the Gal9 interactome during lysosomal damage. Gal9 association with lysosomal glycoproteins increases whereas interactions with a newly identified Gal9 partner, deubiquitinase USP9X, diminishes upon lysosomal injury. In response to damage, Gal9 displaces USP9X from complexes with TAK1 and promotes K63 ubiquitination of TAK1 thus activating AMPK on damaged lysosomes. This triggers autophagy and contributes to autophagic control of membrane-damaging microbe Mycobacterium tuberculosis. Thus, galectin and ubiquitin systems converge to activate AMPK and autophagy during endomembrane homeostasis.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia , Metabolismo Energético , Galectinas/metabolismo , Lisossomos/enzimologia , Ubiquitina/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Adolescente , Adulto , Animais , Autofagia/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Ativação Enzimática , Feminino , Galectinas/genética , Células HEK293 , Células HeLa , Humanos , Hipoglicemiantes/farmacologia , Lisossomos/efeitos dos fármacos , Lisossomos/microbiologia , Lisossomos/patologia , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Masculino , Metformina/farmacologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mycobacterium tuberculosis/patogenicidade , Transdução de Sinais , Células THP-1 , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Ubiquitinação , Adulto Jovem
8.
EMBO J ; 40(10): e103563, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33932238

RESUMO

The early secretory pathway and autophagy are two essential and evolutionarily conserved endomembrane processes that are finely interlinked. Although growing evidence suggests that intracellular trafficking is important for autophagosome biogenesis, the molecular regulatory network involved is still not fully defined. In this study, we demonstrate a crucial effect of the COPII vesicle-related protein TFG (Trk-fused gene) on ULK1 puncta number and localization during autophagy induction. This, in turn, affects formation of the isolation membrane, as well as the correct dynamics of association between LC3B and early ATG proteins, leading to the proper formation of both omegasomes and autophagosomes. Consistently, fibroblasts derived from a hereditary spastic paraparesis (HSP) patient carrying mutated TFG (R106C) show defects in both autophagy and ULK1 puncta accumulation. In addition, we demonstrate that TFG activity in autophagy depends on its interaction with the ATG8 protein LC3C through a canonical LIR motif, thereby favouring LC3C-ULK1 binding. Altogether, our results uncover a link between TFG and autophagy and identify TFG as a molecular scaffold linking the early secretion pathway to autophagy.


Assuntos
Autofagossomos/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Western Blotting , Imunofluorescência , Células HEK293 , Células HeLa , Humanos , Imunoprecipitação , Peptídeos e Proteínas de Sinalização Intracelular/genética , Microscopia Eletrônica de Transmissão , Proteínas Associadas aos Microtúbulos/genética , Proteínas/genética , Interferência de RNA
9.
EMBO Rep ; 24(8): e55895, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37317656

RESUMO

Hexanucleotide repeat expansions within C9orf72 are a frequent cause of amyotrophic lateral sclerosis and frontotemporal dementia. Haploinsufficiency leading to reduced C9orf72 protein contributes to disease pathogenesis. C9orf72 binds SMCR8 to form a robust complex that regulates small GTPases, lysosomal integrity, and autophagy. In contrast to this functional understanding, we know far less about the assembly and turnover of the C9orf72-SMCR8 complex. Loss of either subunit causes the concurrent ablation of the respective partner. However, the molecular mechanism underlying this interdependence remains elusive. Here, we identify C9orf72 as a substrate of branched ubiquitin chain-dependent protein quality control. We find that SMCR8 prevents C9orf72 from rapid degradation by the proteasome. Mass spectrometry and biochemical analyses reveal the E3 ligase UBR5 and the BAG6 chaperone complex as C9orf72-interacting proteins, which are components of the machinery that modifies proteins with K11/K48-linked heterotypic ubiquitin chains. Depletion of UBR5 results in reduced K11/K48 ubiquitination and increased C9orf72 when SMCR8 is absent. Our data provide novel insights into C9orf72 regulation with potential implication for strategies to antagonize C9orf72 loss during disease progression.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Humanos , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Ubiquitina/metabolismo , Proteínas de Transporte/metabolismo , Proteínas/genética , Proteínas/metabolismo , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Chaperonas Moleculares/metabolismo
10.
Mol Cell ; 68(4): 786-796.e6, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29149599

RESUMO

Autophagy allows the degradation of cytosolic endogenous and exogenous material in the lysosome. Substrates are engulfed by double-membrane vesicles, coined autophagosomes, which subsequently fuse with lysosomes. Depending on the involvement of specific receptor proteins, autophagy occurs in a selective or nonselective manner. While this process is well understood at the level of bulky cargo such as mitochondria and bacteria, we know very little about individual proteins and protein complexes that are engulfed and degraded by autophagy. In contrast to the critical role of autophagy in balancing proteostasis, our current knowledge of the autophagic degradome is very limited. Here, we combined proximity labeling with quantitative proteomics to systematically map the protein inventory of autophagosomes. Using this strategy, we uncovered a basal, housekeeping mitophagy pathway that involves piecemeal degradation of mitochondrial proteins in a LC3C- and p62-dependent manner and contributes to mitochondrial homeostasis maintenance when cells rely on oxidative phosphorylation.


Assuntos
Proteínas Associadas aos Microtúbulos/metabolismo , Mitofagia/fisiologia , Fosforilação Oxidativa , Fagossomos/metabolismo , Proteólise , Células HeLa , Humanos , Proteínas Associadas aos Microtúbulos/genética , Fagossomos/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
11.
EMBO Rep ; 23(12): e53065, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36215690

RESUMO

Autophagy is responsible for clearance of an extensive portfolio of cargoes, which are sequestered into vesicles, called autophagosomes, and are delivered to lysosomes for degradation. The pathway is highly dynamic and responsive to several stress conditions. However, the phospholipid composition and protein contents of human autophagosomes under changing autophagy rates are elusive so far. Here, we introduce an antibody-based FACS-mediated approach for the isolation of native autophagic vesicles and ensured the quality of the preparations. Employing quantitative lipidomics, we analyze phospholipids present within human autophagic vesicles purified upon basal autophagy, starvation, and proteasome inhibition. Importantly, besides phosphoglycerides, we identify sphingomyelin within autophagic vesicles and show that the phospholipid composition is unaffected by the different conditions. Employing quantitative proteomics, we obtain cargo profiles of autophagic vesicles isolated upon the different treatment paradigms. Interestingly, starvation shows only subtle effects, while proteasome inhibition results in the enhanced presence of ubiquitin-proteasome pathway factors within autophagic vesicles. Thus, here we present a powerful method for the isolation of native autophagic vesicles, which enabled profound phospholipid and cargo analyses.


Assuntos
Complexo de Endopeptidases do Proteassoma , Proteômica , Humanos , Autofagia , Fosfolipídeos
12.
Mol Cell ; 62(6): 967-981, 2016 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-27211868

RESUMO

Ubiquitination serves as a critical signal in the host immune response to infection. Many pathogens have evolved strategies to exploit the ubiquitin (Ub) system to promote their own survival through a complex interplay between host defense machinery and bacterial virulence factors. Here we report dynamic changes in the global ubiquitinome of host epithelial cells and invading pathogen in response to Salmonella Typhimurium infection. The most significant alterations in the host ubiquitinome concern components of the actin cytoskeleton, NF-κB and autophagy pathways, and the Ub and RHO GTPase systems. Specifically, infection-induced ubiquitination promotes CDC42 activity and linear ubiquitin chain formation, both being required for NF-κB activation. Conversely, the bacterial ubiquitinome exhibited extensive ubiquitination of various effectors and several outer membrane proteins. Moreover, we reveal that bacterial Ub-modifying enzymes modulate a unique subset of host targets, affecting different stages of Salmonella infection.


Assuntos
Proteínas de Bactérias/metabolismo , Células Epiteliais/metabolismo , Proteômica/métodos , Infecções por Salmonella/metabolismo , Salmonella typhimurium/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Ubiquitinação , Células Epiteliais/microbiologia , Células HCT116 , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Infecções por Salmonella/genética , Salmonella typhimurium/patogenicidade , Fatores de Tempo , Transfecção , Proteína cdc42 de Ligação ao GTP/metabolismo
13.
Cell Mol Life Sci ; 80(9): 262, 2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37597109

RESUMO

The constitutive photomorphogenesis 9 (COP9) signalosome (CSN) is a deNEDDylase controlling ubiquitination activity of cullin-RING-E3 ligases (CRLs) and thus the levels of key cellular proteins. While the CSN and its catalytic subunit CSN5 have been extensively studied in cancer, its role in inflammatory and neurological diseases is less understood. Following verification that CSN5 is expressed in mouse and human brain, here we studied the role of the CSN in neuroinflammation and ischemic neuronal damage employing models of relevant brain-resident cell types, an ex vivo organotypic brain slice culture model, and the CRL NEDDylation state-modifying drugs MLN4924 and CSN5i-3, which mimic and inhibit, respectively, CSN5 deNEDDylase activity. Untargeted mass spectrometry-based proteomics revealed that MLN4924 and CSN5i-3 substantially alter the microglial proteome, including inflammation-related proteins. Applying these drugs and mimicking microglial and endothelial inflammation as well as ischemic neuronal stress by TNF and oxygen-glucose-deprivation/reoxygenation (OGD/RO) treatment, respectively, we could link CSN5/CSN-mediated cullin deNEDDylation to reduction of microglial inflammation, attenuated cerebral endothelial inflammation, improved barrier integrity, as well as protection from ischemic stress-induced neuronal cell death. Specifically, MLN4924 reduced phagocytic activity, motility, and inflammatory cytokine expression of microglial cells, and this was linked to inhibition of inflammation-induced NF-κB and Akt signaling. Inversely, Csn5 knockdown and CSN5i-3 increased NF-κB signaling. Moreover, MLN4924 abrogated TNF-induced NF-κB signaling in cerebral microvascular endothelial cells (hCMECs) and rescued hCMEC monolayers from OGD/RO-triggered barrier leakage, while CSN5i-3 exacerbated permeability. In an ex vivo organotypic brain slice model of ischemia/reperfusion stress, MLN4924 protected from neuronal death, while CSN5i-3 impaired neuronal survival. Neuronal damage was attributable to microglial activation and inflammatory cytokines, as indicated by microglial shape tracking and TNF-blocking experiments. Our results indicate a protective role of the CSN in neuroinflammation via brain-resident cell types involved in ischemic brain disease and implicate CSN activity-mimicking deNEDDylating drugs as potential therapeutics.


Assuntos
NF-kappa B , Doenças Neuroinflamatórias , Humanos , Animais , Camundongos , Complexo do Signalossomo COP9 , Proteínas Culina , Células Endoteliais , Encéfalo , Inflamação/tratamento farmacológico , Citocinas
14.
EMBO J ; 38(10)2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30979779

RESUMO

TP53INP2 positively regulates autophagy by binding to Atg8 proteins. Here, we uncover a novel role of TP53INP2 in death-receptor signaling. TP53INP2 sensitizes cells to apoptosis induced by death receptor ligands. In keeping with this, TP53INP2 deficiency in cultured cells or mouse livers protects against death receptor-induced apoptosis. TP53INP2 binds caspase-8 and the ubiquitin ligase TRAF6, thereby promoting the ubiquitination and activation of caspase-8 by TRAF6. We have defined a TRAF6-interacting motif (TIM) and a ubiquitin-interacting motif in TP53INP2, enabling it to function as a scaffold bridging already ubiquitinated caspase-8 to TRAF6 for further polyubiquitination of caspase-8. Mutations of key TIM residues in TP53INP2 abrogate its interaction with TRAF6 and caspase-8, and subsequently reduce levels of death receptor-induced apoptosis. A screen of cancer cell lines showed that those with higher protein levels of TP53INP2 are more prone to TRAIL-induced apoptosis, making TP53INP2 a potential predictive marker of cancer cell responsiveness to TRAIL treatment. These findings uncover a novel mechanism for the regulation of caspase-8 ubiquitination and reveal TP53INP2 as an important regulator of the death receptor pathway.


Assuntos
Autofagia/genética , Proteínas Nucleares/fisiologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Autofagia/efeitos dos fármacos , Caspase 8/metabolismo , Células Cultivadas , Células HEK293 , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Células MCF-7 , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas Nucleares/genética , Receptores de Morte Celular/genética , Receptores de Morte Celular/metabolismo , Transdução de Sinais/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/uso terapêutico , Ubiquitina/metabolismo , Ubiquitinação/efeitos dos fármacos , Ubiquitinação/genética
15.
EMBO Rep ; 22(11): e52864, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34515402

RESUMO

The ubiquitin system is an important part of the host cellular defense program during bacterial infection. This is in particular evident for a number of bacteria including Salmonella Typhimurium and Mycobacterium tuberculosis which-inventively as part of their invasion strategy or accidentally upon rupture of seized host endomembranes-become exposed to the host cytosol. Ubiquitylation is involved in the detection and clearance of these bacteria as well as in the activation of innate immune and inflammatory signaling. Remarkably, all these defense responses seem to emanate from a dense layer of ubiquitin which coats the invading pathogens. In this review, we focus on the diverse group of host cell E3 ubiquitin ligases that help to tailor this ubiquitin coat. In particular, we address how the divergent ubiquitin conjugation mechanisms of these ligases contribute to the complexity of the anti-bacterial coating and the recruitment of different ubiquitin-binding effectors. We also discuss the activation and coordination of the different E3 ligases and which strategies bacteria evolved to evade the activities of the host ubiquitin system.


Assuntos
Mycobacterium tuberculosis , Ubiquitina , Mycobacterium tuberculosis/metabolismo , Salmonella typhimurium , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
16.
Mol Cell ; 57(6): 995-1010, 2015 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-25684205

RESUMO

The small Rho GTPase RAC1 is an essential regulator of cellular signaling that controls actin rearrangements and cell motility. Here, we identify a novel CUL3 RING ubiquitin ligase complex, containing the substrate adaptors KBTBD6 and KBTBD7, that mediates ubiquitylation and proteasomal degradation of TIAM1, a RAC1-specific GEF. Increasing the abundance of TIAM1 by depletion of KBTBD6 and/or KBTBD7 leads to elevated RAC1 activity, changes in actin morphology, loss of focal adhesions, reduced proliferation, and enhanced invasion. KBTBD6 and KBTBD7 employ ATG8 family-interacting motifs to bind preferentially to GABARAP proteins. Surprisingly, ubiquitylation and degradation of TIAM1 by CUL3(KBTBD6/KBTBD7) depends on its binding to GABARAP proteins. Our study reveals that recruitment of CUL3(KBTBD6/KBTBD7) to GABARAP-containing vesicles regulates the abundance of membrane-associated TIAM1 and subsequently spatially restricted RAC1 signaling. Besides their role in autophagy and trafficking, we uncovered a previously unknown function of GABARAP proteins as membrane-localized signaling scaffolds.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Culina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Transativadores/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Sequência de Aminoácidos , Proteínas Reguladoras de Apoptose , Família da Proteína 8 Relacionada à Autofagia , Proteínas Culina/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas dos Microfilamentos/metabolismo , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/genética , Modelos Moleculares , Dados de Sequência Molecular , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Multimerização Proteica , Transdução de Sinais , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T , Transativadores/genética , Ubiquitinação , Proteínas rac1 de Ligação ao GTP/genética
17.
Mol Cell ; 60(1): 89-104, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26431026

RESUMO

Hereditary spastic paraplegias (HSPs) are a diverse group of neurodegenerative diseases that are characterized by axonopathy of the corticospinal motor neurons. A mutation in the gene encoding for Tectonin ß-propeller containing protein 2 (TECPR2) causes HSP that is complicated by neurological symptoms. While TECPR2 is a human ATG8 binding protein and positive regulator of autophagy, the exact function of TECPR2 is unknown. Here, we show that TECPR2 associates with several trafficking components, among them the COPII coat protein SEC24D. TECPR2 is required for stabilization of SEC24D protein levels, maintenance of functional ER exit sites (ERES), and efficient ER export in a manner dependent on binding to lipidated LC3C. TECPR2-deficient HSP patient cells display alterations in SEC24D abundance and ER export efficiency. Additionally, TECPR2 and LC3C are required for autophagosome formation, possibly through maintaining functional ERES. Collectively, these results reveal that TECPR2 functions as molecular scaffold linking early secretion pathway and autophagy.


Assuntos
Autofagia , Proteínas de Transporte/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Transporte Proteico , Paraplegia Espástica Hereditária/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose , Proteínas de Transporte/genética , Células HeLa , Humanos , Mutação , Proteínas do Tecido Nervoso/genética , Paraplegia Espástica Hereditária/metabolismo , Proteínas de Transporte Vesicular/metabolismo
18.
Mol Cell ; 57(1): 39-54, 2015 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-25498145

RESUMO

The lysosome is the final destination for degradation of endocytic cargo, plasma membrane constituents, and intracellular components sequestered by macroautophagy. Fusion of endosomes and autophagosomes with the lysosome depends on the GTPase Rab7 and the homotypic fusion and protein sorting (HOPS) complex, but adaptor proteins that link endocytic and autophagy pathways with lysosomes are poorly characterized. Herein, we show that Pleckstrin homology domain containing protein family member 1 (PLEKHM1) directly interacts with HOPS complex and contains a LC3-interacting region (LIR) that mediates its binding to autophagosomal membranes. Depletion of PLEKHM1 blocks lysosomal degradation of endocytic (EGFR) cargo and enhances presentation of MHC class I molecules. Moreover, genetic loss of PLEKHM1 impedes autophagy flux upon mTOR inhibition and PLEKHM1 regulates clearance of protein aggregates in an autophagy- and LIR-dependent manner. PLEKHM1 is thus a multivalent endocytic adaptor involved in the lysosome fusion events controlling selective and nonselective autophagy pathways.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Lisossomos/metabolismo , Fusão de Membrana/genética , Glicoproteínas de Membrana/genética , Proteínas Associadas aos Microtúbulos/genética , Fagossomos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sequência de Aminoácidos , Animais , Proteínas Reguladoras de Apoptose , Autofagia , Proteínas Relacionadas à Autofagia , Endossomos/metabolismo , Regulação da Expressão Gênica , Células HeLa , Humanos , Glicoproteínas de Membrana/antagonistas & inibidores , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Alinhamento de Sequência , Transdução de Sinais , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
19.
Semin Cell Dev Biol ; 99: 172-182, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31132469

RESUMO

Neuronal cell death is the main pathological feature of chronic neurodegenerative diseases (NDs) such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). As age is strongly linked to NDs, these diseases are one of the leading medical and societal challenges faced by the rapidly aging western societies. Despite the increasing prevalence, the causes and mechanisms behind most NDs are still vague. A common hallmark of several NDs is the accumulation and aggregation of proteins. Prominent examples are amyloid beta and tau in Alzheimer's disease, α-synuclein in Parkinson's disease and transactive response DNA binding protein 43 kDa (TDP-43) in ALS and FTD. Under physiological conditions, protein quality control systems, namely the ubiquitin proteasome system and the autophagy machinery, eliminate such aberrant protein forms and thereby prevent proteotoxic stress. However, as proteins must unfold to undergo proteasomal degradation, aggregated proteins are poor substrates for the proteasome. Such proteins are thought to be primarily turned over by autophagy. Therefore, autophagy is considered a critical ND-protective pathway, which opens up potential new therapeutic interventions. One drawback is that the majority of research in NDs has been focused on elucidating the underlying pathomechanisms in neurons. However, neurons make up only about half of the brain cells with neuroglia being the other major central nervous system (CNS) cell type. Due to the ubiquitous presence of disease-causing mutations in all cells of the CNS, it is likely that non-neuronal cells contribute to the disease onset and/or progression. While our understanding of the roles of autophagy and its contribution to neurodegeneration in neurons deepened considerably over the last years, still comparatively little is known about the functions and disease contribution of the autophagy machinery in glia cells.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Autofagia , Neuroglia/metabolismo , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Humanos , Neuroglia/patologia
20.
J Cell Sci ; 133(18)2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32843575

RESUMO

While studies of the autophagy-related (ATG) genes in knockout models have led to an explosion of knowledge about the functions of autophagy components, the exact roles of LC3 and GABARAP family proteins (human ATG8 equivalents) are still poorly understood. A major drawback in understanding their roles is that the available interactome data has largely been acquired using overexpression systems. To overcome these limitations, we employed CRISPR/Cas9-based genome-editing to generate a panel of cells in which human ATG8 genes were tagged at their natural chromosomal locations with an N-terminal affinity epitope. This cellular resource was employed to map endogenous GABARAPL2 protein complexes using interaction proteomics. This approach identified the ER-associated protein and lipid droplet (LD) biogenesis factor ACSL3 as a stabilizing GABARAPL2-binding partner. GABARAPL2 bound ACSL3 in a manner dependent on its LC3-interacting regions, whose binding site in GABARAPL2 was required to recruit the latter to the ER. Through this interaction, the UFM1-activating enzyme UBA5 became anchored at the ER. Furthermore, ACSL3 depletion and LD induction affected the abundance of several ufmylation components and ER-phagy. Together these data allow us to define ACSL3 as a novel regulator of the enigmatic UFM1 conjugation pathway.


Assuntos
Gotículas Lipídicas , Proteínas , Autofagia , Família da Proteína 8 Relacionada à Autofagia , Humanos , Enzimas Ativadoras de Ubiquitina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA